Senior Economist, GM Forecast and Planning

Amazon UK
London
1 month ago
Applications closed

Related Jobs

View all jobs

Lead Architect

Senior Data Engineers

Senior Credit Risk Analyst (Lead) - Consumer Lending

Senior Electrical Project Engineer

Senior Electrical Project Engineer

Senior Business Analyst, Global Tax Services

DESCRIPTION

At Global Mile Expansion team, our vision is to become the carrier of choice for all of our Selling Partners cross-border shipping needs, offering a complete set of end-to-end cross-border solutions from key manufacturing hubs to footprint countries supporting businesses that use Amazon to grow globally.

As we expand, the need for comprehensive business insight and robust demand forecasting to aid decision-making on asset utilization, especially where we know demand will be variable, becomes vital, as well as operational excellence.

We are building business models involving large amounts of data and macroeconomic inputs to produce robust forecasts to help operational excellence and continue improving the customer experience. We are looking for an experienced economist who can apply innovative modeling techniques to real-world problems and convert them into highly business-impacting solutions.

Key Job Responsibilities

  1. Experienced in using mathematical and statistical approaches to create new, scalable solutions for business problems.
  2. Analyze and extract relevant information from business data to help automate and optimize key processes.
  3. Design, develop, and evaluate highly innovative models for predictive learning.
  4. Establish scalable, efficient, automated processes for large-scale data analyses, model development, model validation, and model implementation.
  5. Research and implement statistical approaches to understand the business long-term and short-term trends and support the strategies.

BASIC QUALIFICATIONS

  1. PHD in mathematics, economics, applied science, engineering, or equivalent.
  2. Industry, consulting, government, or academic research experience.
  3. Design and use of business case models.

PREFERRED QUALIFICATIONS

  1. Deep knowledge in time series econometrics, asset pricing, empirical macroeconomics, or the use of micro and panel data to improve and validate traditional aggregative models.
  2. Background in statistics methodology, applications to business problems, and/or big data.
  3. Research track record.
  4. Effective verbal and written communication skills with both economists and non-economist audiences.
  5. Experience in developing and executing an analytic vision to solve business-relevant problems.

Amazon is an equal opportunities employer. We believe passionately that employing a diverse workforce is central to our success. We make recruiting decisions based on your experience and skills. We value your passion to discover, invent, simplify, and build. Protecting your privacy and the security of your data is a longstanding top priority for Amazon. Please consult our Privacy Notice (https://www.amazon.jobs/en/privacy_page) to know more about how we collect, use, and transfer the personal data of our candidates.

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status. For individuals with disabilities who would like to request an accommodation, please visithttps://www.amazon.jobs/content/en/how-we-hire/accommodations.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Books to Advance Your Machine Learning Career in the UK

Machine learning (ML) remains one of the fastest-growing fields within technology, reshaping industries across the UK from finance and healthcare to e-commerce, telecommunications, and beyond. With increasing demand for ML specialists, job seekers who continually update their knowledge and skills hold a significant advantage. In this article, we've curated ten essential books every machine learning professional or aspiring ML engineer in the UK should read. Covering foundational theory, practical implementations, advanced techniques, and industry trends, these resources will equip you to excel in your machine learning career.

Navigating Machine Learning Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Machine learning (ML) has swiftly become one of the most in-demand skill areas across industries, with companies leveraging predictive models and data-driven insights to solve challenges in healthcare, finance, retail, manufacturing, and beyond. Whether you’re an early-career data scientist aiming to break into ML, a seasoned engineer branching into deep learning, or a product manager exploring AI-driven solutions, machine learning career fairs offer a powerful route to connect with prospective employers face-to-face. Attending these events can help you: Network with hiring managers and technical leads who make direct recruitment decisions. Gain insider insights on the latest ML trends and tools. Learn about emerging job roles and new industry verticals adopting machine learning. Showcase your interpersonal and communication skills, both of which are increasingly important in collaborative AI/ML environments. However, with many applicants vying for attention in a bustling hall, standing out isn’t always easy. In this detailed guide, we’ll walk you through how to prepare meticulously, pitch yourself confidently, ask relevant questions, and follow up effectively to land the machine learning opportunity that aligns with your ambitions.

Common Pitfalls Machine Learning Job Seekers Face and How to Avoid Them

Machine learning has emerged as one of the most sought-after fields in technology, with companies across industries—from retail and healthcare to finance and manufacturing—embracing data-driven solutions at an unprecedented pace. In the UK, the demand for skilled ML professionals continues to soar, and opportunities in this domain are abundant. Yet, amid this growing market, competition for machine learning jobs can be fierce. Prospective employers set a high bar: they seek candidates with not just theoretical understanding, but also strong practical skills, business sense, and an aptitude for effective communication. Whether you’re a recent graduate, a data scientist transitioning into machine learning, or a seasoned developer pivoting your career, it’s essential to avoid common mistakes that may hinder your prospects. This blog post explores the pitfalls frequently encountered by machine learning job seekers, and offers actionable guidance on how to steer clear of them. If you’re looking for roles in this thriving sector, don’t forget to check out Machine Learning Jobs for the latest vacancies across the UK. In this article, we’ll break down these pitfalls to help you refine your approach in applications, interviews, and career development. By taking on board these insights, you can significantly enhance your employability, stand out from the competition, and secure a rewarding position in the world of machine learning.