National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Data/Mlops Engineer

Tech1M
London
5 days ago
Create job alert

About the Role

We're looking for an experienced Data/MLOps Engineer with a startup mentality, who will work at the heart of a dynamic, multidisciplinary and agile team. As the more senior data engineer on the team, you'll spend most of your time working across data and software development teams, ensuring the data science pipeline flows seamlessly as part of the product, focusing on quality, automation and security.

Key Responsibilities

  • Data pipeline design & management:build and maintain robust, scalable data pipelines for ML model training and inference. Ensure data is clean, versioned, and well-documented. Work with batch and real-time (streaming) data sources
  • Model deployment and product integration:package and deploy ML models into production environments using tools like Docker, and cloud-native services (e.g., Vertex AI, MLflow); design and manage scalable model inference systems (APIs, batch jobs, or streaming) so they integrate well into the core product user journeys.
  • Model monitoring & maintenance:implement monitoring for model performance (accuracy, drift, latency). Set up alerts and observability tools to track data/model health in production. Automate retraining workflows based on triggers (e.g., data drift, performance drop).

Role Summary:

  • End-to-End ML workflow automation:data ingestion, preprocessing, model training, validation, deployment, and monitoring; ensure reproducibility and consistency across environments (dev, demo, prod).
  • Robust Data Engineering:design and build high-quality data pipelines that feed ML models. Manage feature engineering, feature stores, and real-time data transformation.
  • Governance & Compliance:track and version data, models, and experiments . Ensure auditability, compliance, and reproducibility of ML workflows.
  • Collaboration across product roles:work closely with: data Scientists to productionise models; Software engineers to integrate product features and manage infrastructure. Product and Analytics teams to understand data and performance needs.

We’d love to hear from you, if you have…

  • Demonstrable understanding of best practices in software engineering
  • Proficiency in at least one general purpose programming language (Typescript/Python) with willingness to learn new languages and technologies
  • Working productive experience with Linux environment and Docker
  • Experience running production systems on the cloud infrastructure/platforms (AWS/Azure/GCP) - GCP experience is a plus
  • Passion for MLOps & Machine Learning Infrastructure tooling (e.g. MLFlow) that you’d like to see implemented at Good With
  • Enjoy participating in the full lifecycle of the software product: from idea and design, via implementation and user interface, to operational considerations
  • Be able to write clean code, take pride in your work and value simplicity, testing and productivity as part of your daily routine, always putting user experience first
  • Fintech/Financial Services experience is a bonus

Related Jobs

View all jobs

Senior Data/Mlops Engineer

Senior Data Scientist – Data Science & GenAI

Senior Data Scientist – Data Science & GenAI

Senior Data Scientist – Data Science & GenAI

Senior Data Engineer

Senior Data Science Engineer - Tennis

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.