Senior Data Services Manager

Kensington Mortgages
Sheffield
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Data Developer

Senior Data Analyst

Senior Data Scientist

BPA Senior Data Analyst

Head of Data Engineering

Senior Pre-Sales Data Scientist - 218921

As a Senior Data Services Manager, you will play a pivotal role within Kensington's Data Services Leadership Team, reporting directly to the Head of Digital & Data Engineering. Acting as the Deputy Head of Data Services, you will oversee the day-to-day operations of the Data Services function, providing leadership, mentorship, and guidance to the team.


You will build and maintain strong working relationships with cross functional technical teams, change delivery and business functions. You will enable, empower and support the Data Service team with the design, implementation and continuous improvement of advanced data solutions that adhere to Kensington's Enterprise Architecture principles and industry best practices.


A key aspect of the role is to ensure that the Data Service Team leads and supports the business with strong Data Governance, Data Quality and Data Management; ensuring the business meets its regulatory obligations and manages risk in accordance with our Enterprise Risk Framework.



Key Accountabilities


  • Technical Leadership:Provide strategic and technical leadership for a high-performing Data Engineering and Business Intelligence function, overseeing the entire data services lifecycle, including development, testing, BAU activities, and production support.
  • Delivery of Solutions:Support, enable and empower the Data Team with the design and implementation of complex data, analytics, and reporting solutions, ensuring alignment with business objectives, architectural principles, and engineering standards.
  • Data Governance and Data Quality:Oversight of data governance to ensure data accuracy, quality, security, and compliance. Promote accountability in data management to enhance reliability and trust in data as a strategic asset.
  • Standards and Best Practices:Evolve and maintain engineering standards, policies, principles, patterns, and practices for constructing robust data solutions and products, embedding governance and quality controls throughout the data lifecycle.
  • Resource and Project Management:Manage team resources and forward planning to deliver projects and product roadmaps effectively.
  • Work Prioritisation:Oversee the intake, prioritisation, and flow of work into the team,
  • Team Development:Mentor, coach, and support the Data Services team, fostering a culture of growth, excellence, and collaboration.
  • Agile Delivery:Drive continuous improvement through Agile development methodologies, emphasizing automation, shorter development cycles, and faster time-to-market through process improvement, tooling, and fostering a culture of ¿inspect and adapt¿.
  • Peer Review and Quality Assurance:Oversee peer reviews, ensuring constructive feedback to engineers to improve craftsmanship, maintain adherence to architectural principles, and promote continuous improvement.
  • Strategic Support:Assist the Head of Digital & Data Engineering with defining and delivering the Data Strategy, achieving business objectives, reporting project/product statuses to the CIO, and managing external supplier and partner relationships.
  • Technical Design Authority:Hold a position on Kensington's Technical Design Authority; influencing, advising, and reviewing critical architectural and technology decisions.



Experience, Knowledge, Skills


Leadership and People

  • Proven track record of successfully leading and developing high-performing Data Engineering and Business Intelligence teams
  • Expertise in engaging and influencing C-suite executives and board members, building strong, trusted relationships across all levels of the organization.
  • Adept at identifying resource, skills, and capability gaps, and proactively addressing them to meet business objectives and drive team success.


Governance, Commercial and Finance

  • Commercially astute and financially literate, with the ability to align data strategy with business goals to drive growth and profitability.
  • Extensive experience in Data Governance, including the development and management of policies, standards, and best practices to ensure data integrity, compliance, and security.


Technology

  • Deep knowledge of Microsoft Data Platform technologies, including both on-premises and Azure-based solutions, with experience guiding the design and implementation of hybrid architectures that span cloud and on-premise environments.
  • A broad understanding of established and emerging technologies, including data integration, data warehousing and advanced analytics platforms, with the ability to assess and recommend appropriate solutions.
  • Strong knowledge of dimensional modelling techniques, including Kimball¿s Business Dimensional Lifecycle, with the ability to provide oversight and guidance in applying these concepts effectively.
  • Demonstrated experience in overseeing the design and delivery of scalable and user-friendly reporting frameworks that empower business users with actionable insights.
  • Proven ability to lead teams in designing and delivering ¿hybrid¿ data solutions that seamlessly integrate on-premise and cloud data sources, ensuring performance, security, and scalability.
  • Familiarity with data engineering tools and automation technologies, including CI/CD pipelines and DevOps practices


Qualifications

  • 10+ years of prior Hands-on experience as a Data Professional (e.g. Data Engineering, BI Developer or Data Analyst)
  • 7+ years leading and managing a Data Engineering / MI / BI Team

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.