Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Scientist (UK)

TWG Global AI
London
3 days ago
Create job alert
Overview

Join to apply for the Senior Data Scientist (UK) role at TWG Global AI.

At TWG Group Holdings, LLC ("TWG Global"), we drive innovation and business transformation across a range of industries, including financial services, insurance, technology, media, and sports, by leveraging data and AI as core assets. Our AI-first, cloud-native approach delivers real-time intelligence and interactive business applications, empowering informed decision-making for both customers and employees.

We prioritize responsible data and AI practices, ensuring ethical standards and regulatory compliance. Our decentralized structure enables each business unit to operate autonomously, supported by a central AI Solutions Group, while strategic partnerships with leading data and AI vendors fuel game-changing efforts in marketing, operations, and product development.

Responsibilities
  • Contribute to the development of predictive and statistical models addressing business-critical challenges across diverse domains.
  • Conduct exploratory data analysis, feature engineering, and hypothesis testing to uncover patterns and support model development.
  • Collaborate with senior data scientists and ML engineers to refine models, improve accuracy, and enhance interpretability.
  • Support the design and evaluation of experiments and A/B tests, ensuring rigorous measurement of impact.
  • Clean, transform, and prepare data from diverse sources, ensuring high-quality datasets for analysis.
  • Build dashboards, reports, and visualizations that communicate insights clearly to technical and non-technical stakeholders.
  • Stay current with emerging data science methods and tools (e.g., generative AI, LLMs, causal inference) and apply them through prototyping.
  • Contribute to the team's knowledge base by documenting workflows and sharing best practices.
Requirements
  • 3+ years of experience applying data science or advanced analytics in a professional setting.
  • Solid understanding of statistical modeling, machine learning fundamentals, and experimental design.
  • Experience with predictive modeling techniques such as regression, classification, clustering, or time-series forecasting.
  • Proficiency in Python and experience with data science libraries (e.g., Pandas, NumPy, scikit-learn, XGBoost, PyTorch, TensorFlow).
  • Strong experience with SQL and data manipulation across large datasets.
  • Familiarity with data visualization tools (e.g., Matplotlib, Seaborn, Plotly, Tableau, or Power BI). Exposure to modern collaborative data platforms (e.g., Databricks, Snowflake, Palantir Foundry) is a plus.
  • Excellent problem-solving skills, eagerness to learn, and ability to work in fast-paced, evolving environments.
  • Strong written and verbal communication skills, with the ability to translate technical findings into business recommendations.
  • Bachelor's or Master's degree in Data Science, Statistics, Computer Science, Economics, or another quantitative discipline.
Preferred Experience
  • Hands-on experience with Palantir platforms (Foundry, AIP, Ontology), including developing analytical workflows and deploying insights within enterprise environments.
  • PhD in Data Science, Statistics, Computer Science, or a related quantitative field. Publications in top data science / ML conferences or journals (e.g., NeurIPS, ICML, KDD, ACL, or similar).
  • Open-source contributions to the data science or ML community (libraries, notebooks, packages, or tutorials). Experience presenting research or applied work at meetups, workshops, or industry conferences.
  • Familiarity with vector databases (FAISS, Pinecone, Milvus, Weaviate) and LLM application frameworks.
  • Cloud or AI/ML certifications (e.g., AWS Machine Learning Specialty, Google Professional Data Engineer, Azure AI Engineer) are a plus.
Benefits
  • Work at the forefront of AI/ML innovation in life insurance, annuities, and financial services.
  • Drive AI transformation for some of the most sophisticated financial entities.
  • Competitive compensation, benefits, future equity options, and leadership opportunities.

This is a hybrid position based in the United Kingdom.

We offer a competitive base pay plus a discretionary bonus as part of the compensation package, in addition to a full range of medical, financial, and/or other benefits.

TWG is an equal opportunity employer, and all qualified applicants will receive consideration for employment without regard to race, color, religion, gender, sexual orientation, gender identity, national origin, disability, or status as a protected veteran.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist - Consumer Behaviour - exciting ‘scale up’ proposition

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.

Why the UK Could Be the World’s Next Machine Learning Jobs Hub

Machine learning (ML) is becoming essential to industries across the globe—from finance and healthcare to retail, logistics, defence, and the public sector. Its ability to uncover patterns in data, make predictions, drive automation, and increase operational efficiency has made it one of the most in-demand skill sets in the technology world. In the UK, machine learning roles—from engineers to researchers, product managers to analysts—are increasingly central to innovation. Universities are expanding ML programmes, enterprises are scaling ML deployments, and startups are offering applied ML solutions. All signs point toward a surging need for professionals skilled in modelling, algorithms, data pipelines, and AI systems. This article explores why the United Kingdom is exceptionally well positioned to become a global machine learning jobs hub. It examines the current landscape, strengths, career paths, sector-specific demand, challenges, and what must happen for this vision to become reality.