Senior Data Scientist, Trust Sensitive Content & Intelligence

Amazon
London
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist: Live Service Safety & Integrity

Senior Data Scientist (Applied AI)

Senior Data Scientist (UK)

Senior Data Scientist - Live Service Integrity

Senior Data Scientist

Senior Data Scientist, Trust Sensitive Content & Intelligence

Job ID: 2850297 | ADCI - BLR 14 SEZ - F07

Alexa is the voice-activated digital assistant powering devices like Amazon Echo, Echo Dot, Echo Show, and Fire TV, which are at the forefront of this latest technology wave. To preserve our customers’ experience and trust, the Alexa Sensitive Content Intelligence (ASCI) team builds services and tools through Machine Learning techniques to implement our policies to detect and mitigate sensitive content in Alexa.

We are looking for a passionate, talented, and inventive Senior Data Scientist to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems, requiring deep learning and generative models knowledge. You will be a Tech Lead for a team of exceptional Data Scientists working in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer-facing experiences. You will collaborate with, and mentor other data scientists while understanding the role data plays in developing data sets and exemplars that meet customer needs. You will analyze and automate processes for collecting and annotating LLM inputs and outputs to assess data quality and measurement.

You will apply state-of-the-art Generative AI techniques to analyze how well our data represents human language and run experiments to gauge downstream interactions. You will work collaboratively with other data scientists and applied scientists to design and implement principled strategies for data optimization.



Key job responsibilities
A Senior Data Scientist should have a good understanding of NLP models (e.g., LSTM, LLMs, other transformer-based models) or CV models (e.g., CNN, AlexNet, ResNet, GANs, ViT) and how best to retrain them to improve performance. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building and improving large-scale distributed systems to create reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies.

You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you.


A day in the life
You will be working with a group of talented scientists on running experiments to test scientific proposals/solutions to improve our sensitive contents detection and mitigation for worldwide coverage. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, model development, and solution implementation. You will mentor other scientists, review and guide their work, and help develop roadmaps for the team. You will work closely with partner teams across Alexa to deliver platform features that require cross-team leadership.


About the team
The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics.
The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.

BASIC QUALIFICATIONS

- 5+ years of data scientist experience
- Experience with statistical models e.g., multinomial logistic regression
- 5+ years of data querying languages (e.g., SQL), scripting languages (e.g., Python) or statistical/mathematical software (e.g., R, SAS, Matlab, etc.) experience
- Experience working with scientists, economists, software developers, or product managers

PREFERRED QUALIFICATIONS

- 3+ years of data visualization using AWS QuickSight, Tableau, R Shiny, etc. experience
- Experience managing data pipelines
- Experience as a leader and mentor on a data science team

Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information.

Posted:January 28, 2025 (Updated about 4 hours ago)

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.