Senior Data Scientist

Mozn
Dumfries
3 weeks ago
Create job alert

Join to apply for the Senior Data Scientist role at Mozn.


About Mozn

Mozn is a rapidly growing technology firm revolutionizing the field of Artificial Intelligence and Data Science headquartered in Riyadh, Saudi Arabia. It supports and grows the tech ecosystem in Saudi Arabia and the GCC region, aligning with Vision 2030. Mozn partners with governments, large corporations, and startups to provide AI‑powered products and solutions locally and globally.


About the Role

The Senior Data Scientist will specialize in Financial Fraud Detection, Sanction Screening, Know Your Customer (KYC) procedures, and Anti‑Money Laundering (AML) initiatives. You will develop and implement advanced analytics models to detect and prevent fraudulent activities and mitigate AML risks.


What You'll Do

  • Lead initiatives to develop and implement strategies for fraud detection and AML.
  • Interact heavily with subject‑matter experts and enterprise clients.
  • Understand pain points and gaps, build a project plan with clear deliverables and execute on it.
  • Plan, research, and experiment with customized project‑based solutions.
  • Conduct research, experimentation, and optimization to enhance technical solutions for detecting fraudulent activities.
  • Plan and execute towards the training of ML models then deploying them.
  • Help shape the roadmap for the development of our fraud and AML solutions.
  • Stay updated with industry trends, best practices, and regulatory requirements related to fraud detection, AML, and financial crime prevention.

Qualifications

  • Bachelor’s or Master’s degree in Data Science, AI, Machine Learning, Mathematics, Statistics, or a related field.
  • At least 5 years of experience in leading advanced data science projects.
  • Minimum 3 years in client‑facing engagements in fraud prevention and AML.
  • Strong communication skills to collect insights from clients, share and present findings.
  • Proficient in handling and analysing large datasets using SQL and Python.
  • Hands‑on experience in data extraction, visualisation, analysis, and transformation.
  • Expert in building and maintaining advanced ML and statistical models; graph analytics experience is advantageous.
  • Skilled in utilising databases, data warehousing, data modelling techniques, and feature generation / engineering.
  • Ability to create and manage complex multi‑stage data pipelines.
  • Experience in building fraud detection models or consulting on fraud detection / AML is highly advantageous.
  • Proficiency in English language required; Arabic language proficiency is preferred.
  • Excellent verbal and written communication skills.
  • Excellent problem‑solving skills, attention to detail, and adaptability.

Benefits

  • Competitive compensation and top‑tier health insurance.
  • Fun and dynamic workplace working alongside some of the greatest minds in AI.
  • Freedom to take responsibility, trust, and autonomy to drive results.
  • Culture that embraces diversity and empowers employees to be their best selves.
  • Opportunity to make a long‑lasting impact in the Middle East.

Job Details

  • Seniority level: Mid‑Senior level
  • Employment type: Full‑time
  • Job function: Engineering and Information Technology
  • Industries: Software Development


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.