Senior Data Scientist

Kleboe Jardine Ltd
Birmingham
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

My client is a successful multi-domain data consultancy business headquartered inEdinburghand operating with offices in bothLondonandBristol. The business is enjoying sustained growth.


Their practice brings together experts across key business sectors including Healthcare & Pharmaceuticals, Retail Banking, Energy, and Telecoms. Within these domains, the business partners with industry-leading blue-chip organisations while also remaining well connected to academia and retaining a focus on R&D. This is an incredibly stimulating environment.


The team are obsessive about delivering value for clients and working in a collaborative, engaged and creative way with colleagues and partner businesses.


This Data Scientist role is suited towards candidates with3-5 years of work experience who have technical skills in ML model development, advanced statistics and commercial acumen.


The Role:

  • As aSenior Data Scientist, you will be a technical specialist, developing and implement ML models that deliver tangible value to clients.
  • You will engage with stakeholders to translate business requirements into analytical solutions using the most appropriate data science techniques.
  • You will engage with stakeholders to translate business requirements into analytical solutions using the most appropriate data science techniques.
  • Act as a thought leader, designing solutions from a theoretical standpoint through to practical execution.
  • The role can be remote within the UK.


The Profile:

  • Broad experience of using a range of predictive modelling and machine learning techniques to tackle business problems across commercial sectors.
  • Ability to translate complex analytical solutions into transparent and actionable business insight.
  • Strong stakeholder engagement skills.
  • Advanced knowledge of statistics and ML techniques (both supervised and unsupervised), knowledge of emerging technologies e.g. Reinforcement Learning is advantageous.
  • Advanced user of Python and/or R, with cloud analytics experience.


This is a fantastic opportunity for a passionate experienced data scientist with ambition to grow their career. To apply and grow their analytics skills in multi-disciplinary project teams and collaborate in a fast-growing data science community.


Visa sponsorship is not provided with this role.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.