Senior Data Scientist - AI/ML (CADD)

Chemify Ltd
Glasgow
3 weeks ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

About Chemify

Chemify is revolutionising chemistry. We are creating a future where the synthesis of previously unimaginable molecules, drugs, and materials is instantly accessible. By combining AI, robotics, and the world's largest continually expanding database of chemical programs, we are accelerating chemical discovery to improve quality of life and extend the reach of humanity.


Job Description

We seek a talented and motivated Senior AI/ML Data Scientist to pioneer the development and application of cutting‑edge machine learning models for computer‑aided drug design (CADD) and small molecule discovery.


You will be joining a dynamic, cross‑disciplinary team of computational scientists, medicinal chemists, and engineers. Your primary focus will be on architecting, training, and deploying sophisticated models to predict molecular properties, generate novel compounds, and ultimately accelerate our drug discovery pipelines.


To be successful in this role, you’ll need deep expertise in modern machine learning, particularly generative AI (Transformers, Diffusion Models), Graph Neural Networks, and predictive modeling. You will leverage your skills to tackle complex scientific challenges, working with vast and diverse chemical and biological datasets.


If you are passionate about applying state‑of‑the‑art AI to solve fundamental challenges in chemistry and are driven to see your work make a real‑world impact on discovering new medicines, we’d love to have you join our team.


Key Responsibilities

  • Design, develop, and optimize state‑of‑the‑art generative models (e.g., Transformers, GNNs, Diffusion Models) for robotic‑assisted synthetic route design.
  • Architect and implement scalable MLOps pipelines for preprocessing large‑scale chemical and biological datasets, model training, and rigorous evaluation.
  • Translate cutting‑edge research in AI/ML into practical solutions that address critical challenges such as property prediction (ADMET/QSAR), reaction prediction, and binding affinity prediction.
  • Collaborate closely with computational chemists, medicinal chemists, and software engineers to define project goals, interpret model outputs, and integrate AI‑driven insights into our discovery platform.
  • Design and execute robust experiments to evaluate model performance, focusing on chemical validity, novelty, synthesizability, and predictive accuracy against experimental data.
  • Clearly communicate complex technical concepts, model results, and strategic recommendations to both technical and non‑technical stakeholders.
  • Stay at the forefront of AI for drug discovery, foundation models for science, and multimodal learning, continuously identifying and championing opportunities to enhance our capabilities.

What You’ll Bring

  • MSc or PhD with 5+ years of industry or academic experience in Computer Science, Machine Learning, Computational Chemistry/Biology, or a closely related field.
  • Demonstrated proficiency in Python and deep learning frameworks such as PyTorch or TensorFlow.
  • Deep theoretical and practical knowledge of modern machine learning architectures, including Transformers, Graph Neural Networks (GNNs), and generative models (VAEs, GANs, Diffusion Models) as applied to scientific problems.
  • Proven ability to lead complex AI/ML projects from concept to deployment in a scientific or drug‑discovery context.
  • Extensive experience working with large‑scale molecular datasets (e.g., SMILES, 3D conformations), biological data (e.g., protein sequences, assay data), and other scientific data formats.
  • Experience with efficient model training and fine‑tuning techniques, such as LoRA, quantization, distillation, and model pruning.
  • Strong background or hands‑on experience applying ML to problems involving protein structures, small‑molecule interactions, or related biological data.
  • Familiarity with scalable computing environments, GPU acceleration, and distributed training.
  • Excellent communication and interpersonal skills for effective collaboration in a multidisciplinary team.
  • Collaborative mindset, strong communication skills, and ability to work effectively within a cross‑disciplinary team.
  • Excellent problem‑solving skills and a proactive, can‑do attitude.
  • Eagerness to learn new scientific concepts, computational methods, and software engineering practices from experienced mentors.
  • Good understanding of version control with Git.

Beneficial Skills

  • Hands‑on experience with cheminformatics toolkits such as RDKit.
  • Experience with Retrieval‑Augmented Generation (RAG) systems, including vector databases (e.g., Redis, FAISS, Milvus, Pinecone) for querying large chemical or biological databases.
  • Experience with Protein/DNA language models (e.g., ProtBERT, ESM, Evo) or protein structure prediction models (e.g., AlphaFold‑like approaches).
  • Experience with evaluation frameworks for reaction and synthetic route design, including human‑in‑the‑loop assessment and metrics for novelty, diversity, and feasibility of synthetic pathways.
  • Strong experience with relational and non‑relational databases (SQL/NoSQL), including data modeling and efficient querying for large‑scale AI workflows.
  • A portfolio of projects or open‑source contributions (e.g., a GitHub profile) that demonstrates your skills and passion for AI/ML development.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.