Senior Data Scientist

Barcelona
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist (Document Search)

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

A world class Tech Organisation are looking for a Senior Data Scientist to join their division in Barcelona on a hybrid basis - opportunity to join a really innovative environment where you'll work with cutting edge technologies.

The company:

The organisation have been running very successfully now for over twenty years and are recognised as market leaders in their sector. They have a global footprint, and their products are used by millions of users every single day.

They are entering a really exciting period of growth, and are recruiting for a number of new positions to the business as they've got pretty big plans for the next few years - so it's genuinely a great time to join.

They thrive on a positive and welcoming culture making it a great place to work, so it probably comes as no surprise that they have really low attrition rates, as so many of their staff members have long and successful careers with the business.

The role:

You'll be joining a multi-disciplinary squad of roughly seven consisting of Software Engineers, Data Engineers and Data Scientists, and will be tasked to ensure the deployment, monitoring and scaling of solutions in live product environments.

You'll be involved in the entire data science lifecycle, from defining problems and exploring data to developing and evaluating models. You'll also collaborate with cross-functional teams, including Engineers and Product Managers to help improve their offerings, particularly in the advertising space.

Within this role you'll also be involved in future planning of projects where you'll gain exposure to researching new modelling approaches, design experiments, scoping out new projects, prototyping and you'll also be regularly involved in assess their current product effectiveness to try and drive improvements.

Key Skills and Experience

** Prior experience within a Data Science role

** Python and SQL

** Data tools (ideally Spark and Apache Airflow)

** Working with Large Language Models

** MLOps

** Infrastructure as code tools (Kubernetes, Docker etc)

** Cloud Services (ideally AWS)

** Experience within AdTech would be really desirable for this role

Useful information:

Their offices are based in central Barcelona where they support hybrid working, you'll be expected onsite about twice a week, however they are really flexible about what days.

They're offering a very competitive salary from €70,000 - €95,000, depending on experience with great benefits to match (which include multiple bonuses and more!).

If you're keen to find out more, please reach out to Matthew MacAlpine at Cathcart Technology

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.