Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Science Manager

MERJE
Cambridge
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Science Manager

Senior Data Science Manager

Senior Data Science Manager

Senior Data Science Manager

Senior Data Science Manager - Financial Planning and Analysis

Manager, Data Science & AI - Data Science, Belfast, Derry/Londonderry

Senior Data Science Manager

Up to £100K!

Once a week in the Midlands


If you're a Senior Data Science Manager looking for a new challenge then this role is for you.


Key Responsibilities:


  • To undertake complex analytical processes taking structured and unstructured data, cleaning and processing it to inform and support efficiency and growth initiatives – driving value in pricing models and across all business areas
  • To design, develop and deploy predictive and prescriptive models using advanced machine learning, underpinned by developing accuracy and assurance tools
  • Focussed on adding value through modelling future business data requirements and identifying and quantifying data value
  • To manage and coach a small team


Key Requirements:


  • Ability to code in multiple languages but with extensive experience in Python and SQL. Experience with R, Hadoop, Spark, NLP(TK) is desirable.
  • Advanced machine learning capability, including:

- Programming: data structures (stacks, queues, multi-dimensional arrays, trees, graphs, etc.), algorithms (searching, sorting, optimization, dynamic programming, etc.), computability and complexity (P vs. NP, NP-complete problems, big-O notation, approximate algorithms, etc.)

- Data modelling: finding useful patterns (correlations, clusters, eigenvectors, etc.) and/or predicting properties of previously unseen instances (classification, regression, anomaly detection, etc.)

- Model evaluation: e.g. validation accuracy, precision, recall, F1-score, MCC, MAE, MAPE, RMSE, PCC2

- Application of ML algorithms and libraries: identification of a suitable model (e.g. decision tree, nearest neighbour, neural network, SVM, etc.), selecting a learning procedure to fit the data (e.g. linear regression, gradient descent, genetic algorithms, bagging, boosting), controlling for bias and variance, overfitting and underfitting, missing data, data leakage, among others

  • Advanced mathematical knowledge, including:

- Basis of algebra: matrices and linear algebra, algebra of sets

- Probability: theories (conditional probability, Bayes rule, likelihood, independence) and techniques (Naive Bayes, Gaussian Mixture Models, Hidden Markov Models)

- Statistics: (descriptive: mean, median, range, SD, var, analysis of valriance: ANOVA, MANOVA, ANCOVA, MANCOVA); Multiple regression, time-series, cross-sectional; Multivariate techniques: PCA and factor analysis)


If interested, send your CV to


Applicants must be located and eligible to work in the UK without sponsorship. Please note, should feedback not be received within 28 days, unfortunately your application has been unsuccessful. In applying for this role, you may be registered on our database so we can contact you about suitable opportunities in future. Your data will be managed in accordance with our Privacy Policy, which can be found on our website. If you would like this job advertisement in an alternative format, please contact MERJE directly.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.