Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Science Consultant

Experian
City of London
2 days ago
Create job alert
Company Description

Experian is a global data and technology company, powering opportunities for people and businesses around the world. We help to redefine lending practices, uncover and prevent fraud, simplify healthcare, create marketing solutions, and gain deeper insights into the automotive market, all using our unique combination of data, analytics and software. We also assist millions of people to realise their financial goals and help them save time and money.


We operate across a range of markets, from financial services to healthcare, automotive, agribusiness, insurance, and many more industry segments.


We invest in people and new advanced technologies to unlock the power of data. As a FTSE 100 Index company listed on the London Stock Exchange (EXPN), we have a team of 22,500 people across 32 countries. Our corporate headquarters are in Dublin, Ireland. Learn more at experianplc.com


Job Description

We have a new vacancy for an experienced Senior Data Science / Analytics Consultant to join our Analytics team and support our cloud-based Ascend platform. You will partner with clients to understand their business, identify what data is required and how clients can best use Experian data analytics to improve business outcomes.


Responsibilities

  • Design analytics solutions to client's problems in any area of consumer lending and credit risk management, using Experian analytics solutions.
  • Engage in a consultative way with the client, to identify problems and define, design and deliver analytics solutions, with expertise in credit risk modelling and optimisation techniques.
  • Present proposals to clients for analytics solutions, including recommendations.
  • Provide consultancy on the potential 'bigger picture' strategies.
  • Co-ordinate with Experian's Analytics Pre-Sales team to contribute to sales opportunities and support the conversion of sales prospects.

Qualifications

  • Strong analytical modelling and consultancy experience gained in credit risk management or banking sector as a Consultant, Data Scientist or Machine Learning Engineer.
  • Applied modelling and analytics experience to lead business decisions.
  • Expertise in credit risk decisioning.
  • Deep coding knowledge in Python with SAS or R.
  • Good stakeholder management skills.
  • Subject matter expert on the mechanics of consumer lending (risk, data usage, outcomes).
  • Knowledge of Cloud / AWS.
  • Product strategy experience desirable but not essential.

Additional Information

Benefits package includes:


Benefits

  • Hybrid working
  • Great compensation package
  • Core benefits include pension, Bupa healthcare, Sharesave scheme and more
  • 25 days annual leave with 8 bank holidays and 3 volunteering days. You can purchase additional annual leave.

Our uniqueness is that we celebrate yours. Experian's culture and people are important differentiators. We take our people agenda very seriously and focus on what truly matters; DEI, work/life balance, development, authenticity, engagement, collaboration, wellness, reward & recognition, volunteering... the list goes on. Experian's people first approach is award winning; Great Place To Work™ in 24 countries, FORTUNE Best Companies to work and Glassdoor Best Places to Work (globally 4.4 Stars) to name a few. Check out Experian Life on social or our Careers Site to understand why.


Experian is proud to be an Equal Opportunity and Affir­mat­ive Action employer. Innovation is a critical part of Experian's DNA and practices, and our diverse workforce drives our success. Everyone can succeed at Experian and bring their whole self to work, irrespective of their gender, ethnicity, religion, colour, sexuality, physical ability or age. If you have a disability or special need that requires accommodation, please let us know at the earliest opportunity.


Grade: C/EB7


Experian Careers - Creating a better tomorrow together


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Science Consultant

Senior Data Science Consultant - Hybrid Analytics

Senior Data Science Consultant - Hybrid Analytics

Senior Data Science Consultant – Credit Risk Analytics

Senior Data Science Consultant - Hybrid Analytics

Senior Data Science Consultant, AWS Professional Services

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.