National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Data Management Professional - Data Engineer - Physical Assets

Avature
London
3 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist - Planning

Senior Data Coach

Senior Data Engineer

Senior Data Scientist

Senior Data Scientist

Senior Data Analyst

Senior Data Management Professional - Data Engineer - Physical Assets

Location:London

Business Area:Data

Ref #:10042065

Description & Requirements

Bloomberg runs on data. Our products are fueled by powerful information. We combine data and context to paint the whole picture for our clients, around the clock – from around the world. In Data, we are responsible for delivering this data, news and analytics through innovative technology - quickly and accurately. We apply problem-solving skills to identify innovative workflow efficiencies, and we implement technology solutions to enhance our systems, products and processes.

The team:
The Physical Assets Data Team maintains databases for physical assets such as renewable and conventional power plants, facilities, and storage projects globally. The team is currently working on a new future-proof data model and workflow that can facilitate and accelerate coverage expansion for integrated use in downstream analysis across our customer groups (including governments, portfolio managers, corporations, equity analysts, etc.). The team also manages the databases powering our iconic DINE terminal function which allows users to discover restaurants worldwide. We track and store data such as restaurant locations, the type of cuisine, ownership relationships, etc. Bloomberg users can also review and rate their dining experiences and see recommendations from colleagues and the larger DINE community.

The Role:
As a Data Engineer on the Physical Assets team, you’re required to understand the data requirements, specify the modeling needs of datasets and use existing techstack solutions for efficient data ingestion workflows and data pipelining. You will implement technical solutions using programming, machine learning, AI, and human-in-the-loop approaches to ensure our data is fit-for-purpose for our clients. You will work closely with our Engineering partners, our Data Product Manager, as well as Product teams, so you need to be able to coordinate with multi-disciplinary and regional teams and have experience in project management and stakeholder engagement. You will need to be comfortable working with large, varied, sophisticated, and often unstructured data sets and demonstrate strong experience in data engineering.

We trust you to:

  1. Build database schema and configure ETL software to onboard new data sets.
  2. Analyze internal processes to find opportunities for improvement, as well as devise and implement innovative solutions.
  3. Build quality data workflows to verify and validate third-party data.
  4. Maintain workflow configurations for critical functions such as acquisition, worklist management, and quality control.
  5. Contribute to the creation of best practices and guidelines for governance.
  6. Partner with Engineering and Product to propose, develop, and implement market-leading solutions for our clients.
  7. Contribute to the technical implementation of a new Physical Assets Data Model.
  8. Understand customer needs and markets to ensure our data sets are fit-for-purpose and seamlessly integrate with other data products when developing data product strategies.
  9. Stay updated on market, industry, and dataset developments related to your area of support.
  10. Make well-informed decisions in a fast-paced, ever-changing environment.
  11. Report on results of ongoing operations and projects, as required.

You’ll need to have:

  1. Understanding and experience of large-scale, distributed systems as well as ETL logics.
  2. Strong passion for data and the overall energy transition movement.
  3. Demonstrated experience with semantic data modeling.
  4. The ability to think creatively and provide out-of-the-box solutions with an eagerness to learn and collaborate.
  5. Familiarity with data processing paradigms and associated tools and technologies.
  6. Exceptional problem-solving skills, numerical proficiency, and high attention to detail.
  7. Excellent written and verbal communication skills, especially when explaining technical processes and solutions to business partners and management.
  8. Ability to work independently as well as in a distributed team environment.

We’d love to see:

  1. Track record of collaborating with Engineering to promote code to production (BREs or DTPs).
  2. Knowledge of Machine Learning frameworks.
  3. Experience in conducting technical training and mentoring others.
  4. Proficiency and previous experience working with Bloomberg tech stack such as BBDS, BCOS, DFR, BRE, DTPs.
  5. Prior experience working with QlikSense (both visualizations and load scripting).

Does this sound like you? Apply if you think we're a good match. We'll get in touch to let you know what the next steps are!

#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.