Senior Data Management Professional - Data Engineer - Physical Assets

Avature
London
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Engineering Consultant

Senior Data Engineering Consultant

Senior Data Engineering Consultant

Senior Data Analyst, AGI-DS RAMP

Senior Data Analyst (Project Controls)

Senior Data Management Professional - Data Engineer - Physical Assets

Location:London

Business Area:Data

Ref #:10042065

Description & Requirements

Bloomberg runs on data. Our products are fueled by powerful information. We combine data and context to paint the whole picture for our clients, around the clock – from around the world. In Data, we are responsible for delivering this data, news and analytics through innovative technology - quickly and accurately. We apply problem-solving skills to identify innovative workflow efficiencies, and we implement technology solutions to enhance our systems, products and processes.

The team:
The Physical Assets Data Team maintains databases for physical assets such as renewable and conventional power plants, facilities, and storage projects globally. The team is currently working on a new future-proof data model and workflow that can facilitate and accelerate coverage expansion for integrated use in downstream analysis across our customer groups (including governments, portfolio managers, corporations, equity analysts, etc.). The team also manages the databases powering our iconic DINE terminal function which allows users to discover restaurants worldwide. We track and store data such as restaurant locations, the type of cuisine, ownership relationships, etc. Bloomberg users can also review and rate their dining experiences and see recommendations from colleagues and the larger DINE community.

The Role:
As a Data Engineer on the Physical Assets team, you’re required to understand the data requirements, specify the modeling needs of datasets and use existing techstack solutions for efficient data ingestion workflows and data pipelining. You will implement technical solutions using programming, machine learning, AI, and human-in-the-loop approaches to ensure our data is fit-for-purpose for our clients. You will work closely with our Engineering partners, our Data Product Manager, as well as Product teams, so you need to be able to coordinate with multi-disciplinary and regional teams and have experience in project management and stakeholder engagement. You will need to be comfortable working with large, varied, sophisticated, and often unstructured data sets and demonstrate strong experience in data engineering.

We trust you to:

  1. Build database schema and configure ETL software to onboard new data sets.
  2. Analyze internal processes to find opportunities for improvement, as well as devise and implement innovative solutions.
  3. Build quality data workflows to verify and validate third-party data.
  4. Maintain workflow configurations for critical functions such as acquisition, worklist management, and quality control.
  5. Contribute to the creation of best practices and guidelines for governance.
  6. Partner with Engineering and Product to propose, develop, and implement market-leading solutions for our clients.
  7. Contribute to the technical implementation of a new Physical Assets Data Model.
  8. Understand customer needs and markets to ensure our data sets are fit-for-purpose and seamlessly integrate with other data products when developing data product strategies.
  9. Stay updated on market, industry, and dataset developments related to your area of support.
  10. Make well-informed decisions in a fast-paced, ever-changing environment.
  11. Report on results of ongoing operations and projects, as required.

You’ll need to have:

  1. Understanding and experience of large-scale, distributed systems as well as ETL logics.
  2. Strong passion for data and the overall energy transition movement.
  3. Demonstrated experience with semantic data modeling.
  4. The ability to think creatively and provide out-of-the-box solutions with an eagerness to learn and collaborate.
  5. Familiarity with data processing paradigms and associated tools and technologies.
  6. Exceptional problem-solving skills, numerical proficiency, and high attention to detail.
  7. Excellent written and verbal communication skills, especially when explaining technical processes and solutions to business partners and management.
  8. Ability to work independently as well as in a distributed team environment.

We’d love to see:

  1. Track record of collaborating with Engineering to promote code to production (BREs or DTPs).
  2. Knowledge of Machine Learning frameworks.
  3. Experience in conducting technical training and mentoring others.
  4. Proficiency and previous experience working with Bloomberg tech stack such as BBDS, BCOS, DFR, BRE, DTPs.
  5. Prior experience working with QlikSense (both visualizations and load scripting).

Does this sound like you? Apply if you think we're a good match. We'll get in touch to let you know what the next steps are!

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.