Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Engineering Manager

ZipRecruiter
London
7 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineering Manager

Senior Data Engineer - Recommendations

Senior Data Engineer - Recommendations

Contract Data Engineering Manager

Senior Data Engineer

Data Engineering Manager, London

Job Description

Who we are

Artefact is a new data service provider, specialising in data consulting and data-driven digital marketing, dedicated to transforming data into business impact across the entire value chain of organisations. We are proud to say we’re enjoying skyrocketing growth.

Our broad range of data-driven solutions in data consulting and digital marketing are designed to meet our clients’ specific needs, always conceived with a business-centric approach and delivered with tangible results. Our data-driven services are built upon the deep AI expertise we’ve acquired with our 1000+ client base around the globe.

We have over 1500 employees across 22 offices who are focused on accelerating digital transformation. Thanks to a unique mix of company assets: state-of-the-art data technologies, lean AI agile methodologies for fast delivery, and cohesive teams of the finest business consultants, data analysts, data scientists, data engineers, and digital experts, all dedicated to bringing extra value to every client.

Job Description

We are seeking a seasoned Data Engineer to lead a dynamic team, ensuring the successful implementation and maintenance of data infrastructure and analytics solutions.

Key responsibilities

  1. Lead, mentor, and develop a team of junior and senior data engineers, fostering a culture of continuous learning and professional growth.
  2. Oversee the end-to-end delivery of data engineering projects, ensuring they are completed on time, within scope, and to the highest quality standards.
  3. Coordinate with cross-functional teams, including data scientists, analysts, and other stakeholders, to understand project requirements and deliverables.
  4. Design, implement, and maintain scalable and robust data pipelines using technologies such as Databricks, MS Fabric, Python, dbt, and Terraform/Terragrunt.
  5. Identify areas for process optimisation within data engineering workflows and implement best practices to enhance efficiency and reliability.
  6. Stay updated with the latest industry trends and technologies, recommending and integrating new tools and techniques as appropriate.
  7. Implement and enforce data governance and security policies to ensure data integrity, privacy, and compliance with relevant regulations.
  8. Collaborate with clients to understand their data needs and provide expert guidance on the best solutions to meet their objectives.
  9. Present project updates and technical concepts to non-technical stakeholders in a clear and concise manner.

Necessary Skills

  1. Proficient in Python, SQL, the Azure cloud platform (including Azure Data Factory), DBT, and Terraform with a strong ability to implement and manage data solutions using these technologies.
  2. Deep understanding of data architecture, data modelling, ETL processes, and data warehousing concepts.
  3. Proven experience in leading and mentoring a team of data engineers, with a track record of fostering a collaborative and high-performing work environment.
  4. Strong decision-making skills and the ability to inspire and motivate team members.
  5. Strong organizational skills and attention to detail.
  6. Strong software engineering discipline and experience using best practice tools and processes: Git, CI/CD, Infrastructure as Code, Scrum, and Agile.
  7. Ability to analyze complex data requirements and translate them into effective data engineering solutions.
  8. Strong problem-solving skills and the ability to think critically and creatively to overcome technical challenges.
  9. Excellent verbal and written communication skills, with the ability to explain technical concepts to non-technical stakeholders.
  10. Strong interpersonal skills and the ability to work effectively with cross-functional teams and clients.
  11. In-depth knowledge of the latest trends and advancements in data engineering, data analytics, and AI.
  12. Deep understanding of data governance, data security, and compliance requirements.

Qualifications

  1. A bachelor’s degree in Computer Science
  2. 5+ years of professional experience in the related field

J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.