Senior Data Engineer - (Python & SQL)

London
12 hours ago
Create job alert

Senior Data Engineer (Python & SQL)
Location London with hybrid working Monday to Wednesday in the office
Salary £70,000 to £85,000 depending on experience
Reference J13026

An AI first SaaS business that transforms high quality first party data into trusted, decision ready insight at scale is looking for a Senior Data Engineer to join its growing data and engineering team.

This role sits at the core of data engineering. You will work with data that is often imperfect and transform it into well structured, reliable datasets that other teams can depend on. The focus is on engineering high quality data foundations rather than analytics or cloud infrastructure alone.

You will design and build clear, maintainable data pipelines using Python and SQL within a modern data and AI platform, with a strong focus on data quality, robustness, and long term reliability.

You will also play an important mentoring role within the team, supporting and guiding other data engineers and helping to raise engineering standards through thoughtful, hands on leadership.

Why join
·A supportive and inclusive environment where different perspectives are welcomed and people are encouraged to contribute and be heard
·Clear progression with space to deepen your technical expertise and grow your confidence at a sustainable pace
·A team that values collaboration, good communication, and shared ownership over hero culture
·The opportunity to work on meaningful data engineering problems where quality genuinely matters

What you will be doing
·Designing and building cloud based data and machine learning pipelines that prepare data for analytics, AI, and product use
·Writing clear, well-structured Python, PySpark, and SQL to transform and validate data from multiple upstream sources
·Taking ownership of data quality, consistency, and reliability across the pipeline lifecycle
·Shaping scalable data models that support a wide range of downstream use cases
·Working closely with Product, Engineering, and Data Science teams to understand data needs and constraints
·Mentoring and supporting other data engineers, sharing knowledge and encouraging good engineering practices
·Contributing to the long term health of the data platform through thoughtful design and continuous improvement

What we are looking for
·Strong experience using Python and SQL to transform large, real world datasets in production environments
·A deep understanding of data structures, data quality challenges, and how to design reliable transformation logic
·Experience working with modern data platforms such as Azure, GCP, AWS, Databricks, Snowflake, or similar
·Confidence working with imperfect data and making it fit for consumption downstream
·Experience supporting or mentoring other engineers through code reviews, pairing, or informal guidance
·Clear, thoughtful communication and a collaborative mindset

You do not need to meet every requirement listed. What matters most is strong, hands on experience using Python and SQL to work confidently with complex, real world data, apply sound engineering judgement, and help others grow through your experience.

Right to work in the UK is required. Sponsorship is not available now or in the future.

Apply to find out more about the role.

If you have a friend or colleague who may be interested, referrals are welcome. For each successful placement, you will be eligible for our general gift or voucher scheme.
Datatech is one of the UK's leading recruitment agencies specialising in analytics and is the host of the critically acclaimed Women in Data event. For more information, visit (url removed) <(url removed)

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.