Senior Data Engineer/ PowerBI

Glasgow
3 weeks ago
Create job alert

Lead Data Engineer - Azure & Databricks Lakehouse

Glasgow (3/4 days onsite) | Exclusive Role with a Leading UK Consumer Business

A rapidly scaling UK consumer brand is undertaking a major data modernisation programme-moving away from legacy systems, manual Excel reporting and fragmented data sources into a fully automated Azure Enterprise Landing Zone + Databricks Lakehouse.
They are building a modern data platform from the ground up using Lakeflow Declarative Pipelines, Unity Catalog, and Azure Data Factory, and this role sits right at the heart of that transformation.
This is a rare opportunity to join early, influence architecture, and help define engineering standards, pipelines, curated layers and best practices that will support Operations, Finance, Sales, Logistics and Customer Care.
If you want to build a best-in-class Lakehouse from scratch-this is the one.

? What You'll Be Doing

Lakehouse Engineering (Azure + Databricks)

Engineer scalable ELT pipelines using Lakeflow Declarative Pipelines, PySpark, and Spark SQL across a full Medallion Architecture (Bronze ? Silver ? Gold).

Implement ingestion patterns for files, APIs, SaaS platforms (e.g. subscription billing), SQL sources, SharePoint and SFTP using ADF + metadata-driven frameworks.

Apply Lakeflow expectations for data quality, schema validation and operational reliability.

Curated Data Layers & Modelling

Build clean, conformed Silver/Gold models aligned to enterprise business domains (customers, subscriptions, deliveries, finance, credit, logistics, operations).

Deliver star schemas, harmonisation logic, SCDs and business marts to power high-performance Power BI datasets.

Apply governance, lineage and fine-grained permissions via Unity Catalog.

Orchestration & Observability

Design and optimise orchestration using Lakeflow Workflows and Azure Data Factory.

Implement monitoring, alerting, SLAs/SLIs, runbooks and cost-optimisation across the platform.

DevOps & Platform Engineering

Build CI/CD pipelines in Azure DevOps for notebooks, Lakeflow pipelines, SQL models and ADF artefacts.

Ensure secure, enterprise-grade platform operation across Dev ? Prod, using private endpoints, managed identities and Key Vault.

Contribute to platform standards, design patterns, code reviews and future roadmap.

Collaboration & Delivery

Work closely with BI/Analytics teams to deliver curated datasets powering dashboards across the organisation.

Influence architecture decisions and uplift engineering maturity within a growing data function.

? Tech Stack You'll Work With

Databricks: Lakeflow Declarative Pipelines, Workflows, Unity Catalog, SQL Warehouses

Azure: ADLS Gen2, Data Factory, Key Vault, vNets & Private Endpoints

Languages: PySpark, Spark SQL, Python, Git

DevOps: Azure DevOps Repos, Pipelines, CI/CD

Analytics: Power BI, Fabric

? What We're Looking For

Experience

5-8+ years of Data Engineering with 2-3+ years delivering production workloads on Azure + Databricks.

Strong PySpark/Spark SQL and distributed data processing expertise.

Proven Medallion/Lakehouse delivery experience using Delta Lake.

Solid dimensional modelling (Kimball) including surrogate keys, SCD types 1/2, and merge strategies.

Operational experience-SLAs, observability, idempotent pipelines, reprocessing, backfills.

Mindset

Strong grounding in secure Azure Landing Zone patterns.

Comfort with Git, CI/CD, automated deployments and modern engineering standards.

Clear communicator who can translate technical decisions into business outcomes.

Nice to Have

Databricks Certified Data Engineer Associate

Streaming ingestion experience (Auto Loader, structured streaming, watermarking)

Subscription/entitlement modelling experience

Advanced Unity Catalog security (RLS, ABAC, PII governance)

Terraform/Bicep for IaC

Fabric Semantic Model / Direct Lake optimisation

Related Jobs

View all jobs

Senior Data Engineer/ PowerBI

Senior Data Engineer - Build Scalable Pipelines & BI (Remote)

Senior Data Engineer - AI Pipelines (Monthly Europe Travel)

Senior Data Engineer

Senior Data Engineer

Senior Consultant_ Data Analyst

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.