Senior Data Engineer - Microsoft Fabric

Edinburgh
2 weeks ago
Create job alert

A highly-successful Data Consultancy are seeking a number of ambitious Databricks Data Engineers to join their team. They are both a Microsoft Partner and a Databricks Partner, and are experts in helping their clients to better manage and uncover the value in their data.

They pride themselves on developing tailor-made data-driven solutions to suit the specific needs of their clients, with a growing client base largely within Financial Services, amongst other industries.

In this role, you will be working in a team of highly skilled professionals to deliver effective market-leading data solutions using the latest cutting-edge technologies. This particular role will focus on leveraging Microsoft Fabric and Azure Data Platform technologies.

You will work largely from home, but will sometimes attend the Edinburgh office or visit clients on-site depending on requirements, so are asked to keep an open-mind in this regard.

This is a brilliant opportunity to develop your career with a fast-moving and forwards-thinking consultancy who will invest in your personal and professional development - you will have a dedicated careers coach and industry-leading training to ensure that you are able to reach your full potential.

Requirements:

Experience designing data solutions using Microsoft Fabric, Azure Synapse and Azure Data Factory
Strong skills in both SQL and Python
Microsoft Certifications would be highly desirable
Desire to be client-facing with brilliant communication skillsBenefits:

Salary up to £70,000 depending on experience
25 days' holiday plus bank holidays
Discretionary bonus
Contributory pension scheme
Private medical health insurance

Please Note: This is role for UK residents only. This role does not offer Sponsorship. You must have the right to work in the UK with no restrictions. Some of our roles may be subject to successful background checks including a DBS and Credit Check.

Tenth Revolution Group (and Nigel Frank) are the go-to recruiter for Power BI and Azure Data Platform roles in the UK, offering more opportunities across the country than any other. We're the proud sponsor and supporter of SQLBits, and the London Power BI User Group. To find out more and speak confidentially about your job search or hiring needs, please contact me directly at

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer (Kafka Expert)

Senior Data Engineer

Senior Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!