Senior Data Engineer (Kafka Expert)

Marionete
London
5 days ago
Create job alert

Marionete

Marionete is an independently minded, entrepreneurial technology consultancy helping clients exploit tomorrow’s technology to find unexpected solutions to today’s business problems.


(THE CANDIDATES MUST BE PORTUGAL, SPAIN or UK BASED)

For more information visit us: www.marionete.co.uk

SKILLS

Must-Have Requirements


  • Minimum of5 yearsin Data Engineering.
  • Speaksfluent English(written and verbal) for effective collaboration with stakeholders.
  • Proven ability to communicate complex technical concepts to both technical and non-technical audiences.
  • Capable of providingtechnical guidanceand mentoring to junior team members.
  • Experience working incross-functional teams, including data scientists, analysts, and DevOps engineers.
  • Ability to influence and establish best practices in data engineering processes.
  • Self-motivated with a growth mindset and an eagerness to stay updated on emerging technologies.


Apache Kafka Expertise:

Proven experience designing, developing, and managingKafka-based data pipelines.

Good understanding ofKafka Streams, Connect, or the Confluent Kafka platform.


Data Engineering Skills:

Hands-on experience withETL toolsanddata ingestion processes.

  • StrongSQL skills, with the ability to write optimized and scalable queries.
  • Or, Proficiency in at least one programming language (Python, Java, Scala, or .NET).


CI/CD:

Experience usingCI/CD pipelinesfor development and deployment of data pipelines.

Proficiency in Git-based workflows and tools like Jenkins, Azure DevOps, or GitLab CI/CD.



Nice-to-Have Skills


Azure Ecosystem:

  • Knowledge of Azure services likeAzure Data Factory,Azure Data Lake, orAzure Synapse.
  • Understanding of Azure’ssecurityandidentity managementpractices (e.g., IAM, RBAC).


Snowflake Data Warehouse Experience:

  • Designing and optimizingSnowflake schemasfor efficient querying.
  • ImplementingETL/ELT pipelinesto load and transform data in Snowflake.


Big Data Processing Frameworks:

  • Familiarity withApache Spark, Hadoop, or other distributed data processing frameworks.


Data Governance and Compliance:

  • Understanding ofdata governance principles, security policies, and compliance standards (e.g., GDPR, HIPAA).


Benefits

  • Competitive compensation
  • Permanent position
  • Benefits package, including health insurance and mental health support
  • Financial support for ongoing training
  • There is a relaxed dress code at the Marionete offices
  • An abundance of career paths and opportunities in which to advance
  • A flexible and hybrid work environment
  • Interview process: 3 interviews


Application

Marionete believes in providing equal employment opportunities to everyone. We do not practice and will not tolerate discrimination based on race, skin color, ethnicity, national origin, gender, sexual orientation, marital status, maternity, religion, age, disability, gender identity, results of genetic testing, or service in the military.


By applying to Marionete vacancies, you agree that your data and CV remain secure and confidential with your application. Marionete is a company in compliance with General Data Protection Regulation (GDPR).

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer - Databricks

Senior Data Engineer - DV Cleared

Senior Data Engineer - MS Fabric - Remote - £70k - £75k

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.