Senior Data Engineer (Equity Only)

Luupli
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer - Fabric - £70,000 - London

Job Title: Senior Data Engineer

About Luupli:

Luupli is a social media app that has equity, diversity, and equality at its heart. We believe that social media can be a force for good, and we are committed to creating a platform that maximises the value that creators and businesses can gain from it, while making a positive impact on society and the planet. Our app is still in development, but we are excited about the possibilities it presents. Our team is made up of passionate and dedicated individuals who are committed to making Luupli a success.

About the Role:

We’re seeking a skilled Senior Data Engineer with experience in recommendation systems to join our team. This role is pivotal in enhancing our backend systems, managing databases, and optimising recommendation algorithms. You’ll play a critical role in the architecture and performance of our recommendation infrastructure, ensuring accurate, relevant, and efficient recommendations for our users.

Responsibilities:

Data and Database Management:

  • Design, optimise, and maintain tables and data structures to support recommendation and trending content data.
  • Work with structured data storage solutions, including PostgreSQL and JSONB, to manage recommendation and interaction data.

Recommendation Systems:

  • Implement and refine recommendation algorithms (e.g., collaborative filtering, content-based, and hybrid approaches) to enhance relevancy.
  • Use similarity search libraries like Annoy or Faiss to optimise recommendation speed and accuracy.
  • Continuously evaluate recommendation logic to better serve user preferences, ensuring real-time delivery.

Data Aggregation and Analysis:

  • Aggregate, analyses, and process user interaction data to support recommendations and trending content.
  • Design efficient queries and implement aggregation methods to capture relevant data and insights for recommendations.

Debugging and Optimization:

  • Identify, troubleshoot, and resolve data handling issues to ensure accurate recommendation delivery.
  • Optimize queries, processing workflows, and containerized services for high performance and scalability within AWS ECS.

Requirements:

  • Proven experience as a Data Engineer or Backend Engineer, with a focus on recommendation systems.
  • Proficient in SQL and database management, especially with PostgreSQL and JSONB for structured data handling.
  • Solid understanding of recommendation algorithms (collaborative filtering, content-based, hybrid approaches).
  • Experience with similarity search libraries such as Annoy or Faiss.
  • Strong programming skills in Python, with experience in building backend logic for data-intensive applications in a containerized environment.
  • Familiarity with AWS ECS for container management, including task scheduling and scaling.
  • Experience using AWS Event Bridge to trigger workflows or automate tasks in response to application events.
  • Analytical skills for data aggregation, querying, and insights generation.
  • Strong debugging and optimization skills for handling large-scale data processing in cloud-based environments.

Preferred Qualifications:

  • Knowledge of data aggregation pipelines, ETL processes, and data handling at scale.
  • Familiarity with additional AWS services (e.g., S3, Lambda) for data storage and event-driven architectures.
  • Experience with machine learning libraries or tools used in recommendation systems.

Compensation:

This is an equity-only position, offering a unique opportunity to gain a stake in a rapidly growing company and contribute directly to its success.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Books to Advance Your Machine Learning Career in the UK

Machine learning (ML) remains one of the fastest-growing fields within technology, reshaping industries across the UK from finance and healthcare to e-commerce, telecommunications, and beyond. With increasing demand for ML specialists, job seekers who continually update their knowledge and skills hold a significant advantage. In this article, we've curated ten essential books every machine learning professional or aspiring ML engineer in the UK should read. Covering foundational theory, practical implementations, advanced techniques, and industry trends, these resources will equip you to excel in your machine learning career.

Navigating Machine Learning Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Machine learning (ML) has swiftly become one of the most in-demand skill areas across industries, with companies leveraging predictive models and data-driven insights to solve challenges in healthcare, finance, retail, manufacturing, and beyond. Whether you’re an early-career data scientist aiming to break into ML, a seasoned engineer branching into deep learning, or a product manager exploring AI-driven solutions, machine learning career fairs offer a powerful route to connect with prospective employers face-to-face. Attending these events can help you: Network with hiring managers and technical leads who make direct recruitment decisions. Gain insider insights on the latest ML trends and tools. Learn about emerging job roles and new industry verticals adopting machine learning. Showcase your interpersonal and communication skills, both of which are increasingly important in collaborative AI/ML environments. However, with many applicants vying for attention in a bustling hall, standing out isn’t always easy. In this detailed guide, we’ll walk you through how to prepare meticulously, pitch yourself confidently, ask relevant questions, and follow up effectively to land the machine learning opportunity that aligns with your ambitions.

Common Pitfalls Machine Learning Job Seekers Face and How to Avoid Them

Machine learning has emerged as one of the most sought-after fields in technology, with companies across industries—from retail and healthcare to finance and manufacturing—embracing data-driven solutions at an unprecedented pace. In the UK, the demand for skilled ML professionals continues to soar, and opportunities in this domain are abundant. Yet, amid this growing market, competition for machine learning jobs can be fierce. Prospective employers set a high bar: they seek candidates with not just theoretical understanding, but also strong practical skills, business sense, and an aptitude for effective communication. Whether you’re a recent graduate, a data scientist transitioning into machine learning, or a seasoned developer pivoting your career, it’s essential to avoid common mistakes that may hinder your prospects. This blog post explores the pitfalls frequently encountered by machine learning job seekers, and offers actionable guidance on how to steer clear of them. If you’re looking for roles in this thriving sector, don’t forget to check out Machine Learning Jobs for the latest vacancies across the UK. In this article, we’ll break down these pitfalls to help you refine your approach in applications, interviews, and career development. By taking on board these insights, you can significantly enhance your employability, stand out from the competition, and secure a rewarding position in the world of machine learning.