Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Engineer (Equity Only)

Luupli
Manchester
10 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer – SC Cleared

Senior Data Engineer/ Scientist

Job Title: Senior Data Engineer

About Luupli:

Luupli is a social media app that has equity, diversity, and equality at its heart. We believe that social media can be a force for good, and we are committed to creating a platform that maximises the value that creators and businesses can gain from it, while making a positive impact on society and the planet. Our app is still in development, but we are excited about the possibilities it presents. Our team is made up of passionate and dedicated individuals who are committed to making Luupli a success.

About the Role:

We’re seeking a skilled Senior Data Engineer with experience in recommendation systems to join our team. This role is pivotal in enhancing our backend systems, managing databases, and optimising recommendation algorithms. You’ll play a critical role in the architecture and performance of our recommendation infrastructure, ensuring accurate, relevant, and efficient recommendations for our users.

Responsibilities:

Data and Database Management:

  • Design, optimise, and maintain tables and data structures to support recommendation and trending content data.
  • Work with structured data storage solutions, including PostgreSQL and JSONB, to manage recommendation and interaction data.

Recommendation Systems:

  • Implement and refine recommendation algorithms (e.g., collaborative filtering, content-based, and hybrid approaches) to enhance relevancy.
  • Use similarity search libraries like Annoy or Faiss to optimise recommendation speed and accuracy.
  • Continuously evaluate recommendation logic to better serve user preferences, ensuring real-time delivery.

Data Aggregation and Analysis:

  • Aggregate, analyses, and process user interaction data to support recommendations and trending content.
  • Design efficient queries and implement aggregation methods to capture relevant data and insights for recommendations.

Debugging and Optimization:

  • Identify, troubleshoot, and resolve data handling issues to ensure accurate recommendation delivery.
  • Optimize queries, processing workflows, and containerized services for high performance and scalability within AWS ECS.

Requirements:

  • Proven experience as a Data Engineer or Backend Engineer, with a focus on recommendation systems.
  • Proficient in SQL and database management, especially with PostgreSQL and JSONB for structured data handling.
  • Solid understanding of recommendation algorithms (collaborative filtering, content-based, hybrid approaches).
  • Experience with similarity search libraries such as Annoy or Faiss.
  • Strong programming skills in Python, with experience in building backend logic for data-intensive applications in a containerized environment.
  • Familiarity with AWS ECS for container management, including task scheduling and scaling.
  • Experience using AWS Event Bridge to trigger workflows or automate tasks in response to application events.
  • Analytical skills for data aggregation, querying, and insights generation.
  • Strong debugging and optimization skills for handling large-scale data processing in cloud-based environments.

Preferred Qualifications:

  • Knowledge of data aggregation pipelines, ETL processes, and data handling at scale.
  • Familiarity with additional AWS services (e.g., S3, Lambda) for data storage and event-driven architectures.
  • Experience with machine learning libraries or tools used in recommendation systems.

Compensation:

This is an equity-only position, offering a unique opportunity to gain a stake in a rapidly growing company and contribute directly to its success.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.