Senior Data Engineer

Piper Maddox
Glasgow
2 days ago
Create job alert

Data Engineer

Asset Performance & Renewable Energy Analytics


The opportunity


An established renewable energy and digital solutions business is expanding its Asset Performance Management (APM) technology team and is hiring an experienced Data Engineer to support large-scale operational renewable assets.


This role sits within a product-focused engineering group responsible for building and scaling data platforms used to monitor, optimise, and improve the performance of wind, solar, and energy storage assets globally.


You will work closely with software engineers, data scientists, and platform teams to design and operate high-quality data pipelines that directly underpin operational decision-making and analytics for live energy assets.


Key responsibilities

  • Design, build, and maintain scalable data pipelines using Databricks (including Delta Live Tables).
  • Develop robust ETL/ELT workflows ingesting data from operational, telemetry, and third-party systems.
  • Optimise pipeline performance, reliability, and cost efficiency in cloud environments.
  • Ensure data quality, lineage, governance, and documentation across production systems.
  • Collaborate cross-functionally with analytics, product, and platform teams.
  • Support CI/CD automation for data pipeline deployment.
  • Contribute to reusable frameworks and engineering best practices within the team.


Essential experience

Candidates must have prior, hands-on experience working with at least one of the following APM platforms:

  • Power Factors
  • Bazefield
  • GPM


This experience is critical, as the role involves working directly with data models, integrations, and operational outputs from these platforms.


Technical requirements

  • Proven experience as a Data Engineer in production environments.
  • Strong Python and SQL skills.
  • Hands-on Databricks experience (DLT, Delta Lake; Unity Catalog desirable).
  • Solid understanding of data modelling, data warehousing, and distributed systems.
  • Experience with cloud data platforms (Azure preferred; AWS or GCP acceptable).
  • Familiarity with Git-based workflows and CI/CD pipelines.
  • Exposure to analytics or ML-driven use cases is beneficial.


Nice to have

  • Databricks certifications (Associate or Professional).
  • Experience supporting asset-heavy or industrial environments.
  • Background in energy, utilities, or infrastructure data platforms.


Why this role

  • Work on live, utility-scale renewable assets rather than abstract datasets.
  • High-impact role within a mature but fast-evolving digital platform.
  • Strong engineering culture with real ownership and technical influence.
  • Long-term stability combined with ongoing platform growth and investment.

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.