Senior Data Engineer (Big Data/ Hadoop/ Spark) (Banking)

Hays Technology
London
1 day ago
Create job alert

Your new company

Working for a renowned financial services organisation

Your new role

We're looking for a Senior Data Engineer to design and deliver scalable on prem, high‑quality data solutions for low/ high-level data platforms that power analytical and business insights. This is a hands‑on role suited to someone with strong data engineering and big data expertise, ideally gained within financial services. Joining leading commodities, metals, trading, and exchange group, you will support a strategic metals initiative focused on reducing on‑prem platform costs and modernising legacy ETL processes.

You'll help design and build a new on‑prem data platform aligned to the metals strategy while developing and maintaining scalable data pipelines and analytics infrastructure. Using Hadoop, Big Data, and Spark technologies, you will ensure data quality through automated validation, monitoring, and testing. You will also enable seamless integration across data warehouses and data lakes, contributing to a robust, scalable, and resilient enterprise data ecosystem.

What you'll need to succeed

Vast Data Engineering expertise with Big Data technologies.
Experience designing and building on‑prem data platforms, from high‑level architecture to detailed technical design.
Hands‑on experience configuring multi‑node Hadoop clusters, including resource management, security, and performance tuning.
Strong Big Data engineering background using Apache Airflow, Spark, dbt, Kafka, and Hadoop ecosystem tools.
Knowledge of RDBMS systems (PostgreSQL, SQL Server) and familiarity with NoSQL/distributed databases such as MongoDB.
Proven delivery of streaming pipelines and real‑time data processing solutions.
Improved job efficiency and reduced runtimes through Apache Spark optimisation and development.
Some experience with containerisation (Docker, Kubernetes) and CI/CD pipelines.
Delivered streaming pipelines and real‑time data processing solutions.
Experience replacing legacy ETL tools (e.g., Informatica) with modern data engineering pipelines and platform builds.
Proven background working within financial services environments.
What you'll get in return
Flexible working options available.

What you need to do now
If you're interested in this role, click 'apply now' to forward an up-to-date copy of your CV, or call us now.

Hays Specialist Recruitment Limited acts as an employment agency for permanent recruitment and employment business for the supply of temporary workers. By applying for this job you accept the T&C's, Privacy Policy and Disclaimers which can be found at (url removed)

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer - Energy

Senior Data Engineer, SQL, RDBMS, AWS, Python, Mainly Remote

Senior Data Engineer (2 days onsite in London)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.