Senior Data Engineer

Humanoid
London
6 days ago
Create job alert

Humanoid is the first AI and robotics company in the UK, creating the world’s most advanced, reliable, commercially scalable, and safe humanoid robots. Our first humanoid robot HMND 01 is a next-gen labour automation unit, providing highly efficient services across various use cases, starting with industrial applications.


We are looking forSenior/Lead Data Engineerto join our team based in London, UK.


Our Mission

At Humanoid we strive to create the world’s leading, commercially scalable, safe, and advanced humanoid robots that seamlessly integrate into daily life and amplify human capacity.


Vision

In a world where artificial intelligence opens up new horizons, our faith in its potential unveils a new outlook where, together, humans and machines build a new future filled with knowledge, inspiration, and incredible discoveries. The development of a functional humanoid robot underpins an era of abundance and well-being where poverty will disappear, and people will be able to choose what they want to do. We believe that providing a universal basic income will eventually be a true evolution of our civilization.


Solution

As the demands on our built environment rise, labour shortages loom. With the world’s workforce increasingly moving away from undesirable tasks, the manufacturing, construction, and logistics industries critical to our daily lives are left exposed. By deploying our general-purpose humanoid robots in environments deemed hazardous or monotonous, we envision a future where human well-being is safeguarded while closing the gaps in critical global labour needs.


Responsibilities

  • Curate, preprocess, and manage large datasets used for training humanoid robots — projected to reach hundreds of terabytes by 2025.
  • Ensure the quality, accuracy, and consistency of data across multiple projects.
  • Collaborate with machine learning teams to design data pipelines that support efficient training workflows.
  • Develop and maintain data quality metrics reporting systems.
  • Implement best practices for data management, including versioning, security, and compliance.


Expertise

  • Bachelor’s or Master’s degree in Data Science, Computer Science, or a related field.
  • 5+ years of experience in data engineering and data quality.
  • Strong proficiency in Python / Java, SQL, and data processing frameworks including Apache Spark.
  • Knowledge of machine learning and its data requirements.
  • Attention to detail and a strong commitment to data integrity.
  • Excellent problem-solving skills and ability to work in a fast-paced environment.

Preferred Qualifications

  • Experience with Databricks and Databricks Unity Catalog.
  • Familiarity with dbt and Airflow.
  • Experience with data quality frameworks.
  • Understanding of ML requirements and experience working with ML teams.
  • Experience in robotics or a related field.
  • Familiarity with cloud-based data storage and processing solutions.
  • Passion for contributing to the development of advanced humanoid robots.


Benefits

  • High competitive salary.
  • 23 working days of vacation per year.
  • Flexible working hours.
  • Opportunity to work on the latest technologies in AI, Robotics, Blockchain and others.
  • Startup model, offering a dynamic and innovative work environment.

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer - Databricks

Senior Data Engineer - DV Cleared

Senior Data Engineer - MS Fabric - Remote - £70k - £75k

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.