Senior Data Engineer

Phoenix Group Holdings
Edinburgh
1 week ago
Create job alert

We have an incredible opportunity to join us here at Phoenix as a Senior Data Engineer in our Engineering & Delivery function with Group IT

Job Type: Permanent

Location:This role could be based in either our Wythall, Telford or Edinburgh offices with time spent working in the office and at home.

Flexible working: All of our roles are open to part-time, job-share and other types of flexibility. We will discuss what is important to you and balancing this with business requirements during the recruitment process. 

Closing Date:24/04/2025

Salary and benefits:£45,000 - £60,000 plus 16% bonus up to 32%, private medical cover, 38 days annual leave, excellent pension, 12x salary life assurance, career breaks, income protection, 3x volunteering days and much 

Who are we?

We want to be the best place that any of our 6,600 colleagues have ever worked. 
 
We’re the UK’s largest long-term savings and retirement business. We offer a range of products across our market-leading brands, Standard Life, SunLife, Phoenix Life and ReAssure. Around 1 in 5 people in the UK has a pension with us. We’re a FTSE 100 organisation that is tackling key issues such as transitioning our portfolio to net zero by 2050, and we’re not done yet. 

The Role

We are seeking a Senior Data Engineer to join our Engineering & Delivery function within Group IT, This role offers candidates with a strong background in data & analytics engineering the opportunity to inform operational decisions and influence change that can really make a different to our customer experience. 

As a Senior Data Engineer, you will be responsible for designing, implementing, and optimizing our analytics solutions on cloud platforms, with a strong emphasis on Databricks. You will work closely with cross-functional teams, including data scientists, analysts, and software engineers, to ensure the seamless integration of data and analytics capabilities into our business processes.

Key Responsibilities:

Design, implement, and optimize analytics infrastructure on cloud platforms such as including Azure Utilize best practices for data storage, processing, and retrieval in cloud environments. Implement and manage data pipelines for efficient data processing and analysis. Serve as the subject matter expert on Databricks, ensuring effective utilization of the platform for analytics and data science activities. Develop and maintain Databricks notebooks for data exploration, feature engineering, and model development. Optimize Databricks workflows for performance and scalability. Collaborate with data engineering teams to integrate diverse data sources into the analytics environment. Implement and maintain data connectors and ETL processes for seamless data flow. Identify and address performance bottlenecks in analytics processes and queries. Implement optimizations for large-scale data processing and analysis. Implement security best practices to safeguard sensitive data. Ensure compliance with data governance and regulatory requirements. Work closely with data scientists, analysts, and other stakeholders to understand analytics requirements. Create comprehensive documentation for analytics infrastructure and processes.

Qualifications:

Proven experience as an Data Engineer, with a focus on cloud technologies and Databricks. Strong proficiency in cloud platforms (AWS, Azure, or Google Cloud) and related analytics services. Expertise in building and optimizing data pipelines and workflows. In-depth knowledge of Databricks, including notebook development and optimization. Solid programming skills in languages such as Python, Scala, or SQL. Experience with data modeling, warehousing, and analytics technologies. Strong problem-solving and analytical skills. Excellent communication and collaboration skills.

We want to hire the whole version of you.

We are committed to ensuring that everyone feels accepted and welcome applicants from all backgrounds. If your experience looks different from what we’ve advertised and you believe that you can bring value to the role, we’d love to hear from you. 

 If you require any adjustments to the recruitment process, please let us know so we can help you to be at your best. 

Please note that we reserve the right to remove adverts earlier than the advertised closing date. We encourage you to apply at the earliest opportunity.

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer - Databricks

Senior Data Engineer - DV Cleared

Senior Data Engineer - MS Fabric - Remote - £70k - £75k

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.