Senior Data Engineer

Anson McCade
Liverpool
8 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Principal Data Engineer – Consulting

Location:Leeds, Bristol or London (hybrid)

Salary:£90,000 – £105,000 (depending on experience) + bonus + benefits


NOTE:Candidates for this role must be eligible forUK Security Clearance.


Are you passionate about designing modern data solutions that drive real business value? We're looking for an experienced, hands-onPrincipal Data Engineerto join our growing consulting practice. This is a fantastic opportunity to work across greenfield projects, collaborating closely with clients to deliver scalable, cloud-native data platforms and pipelines.


About the Role

You’ll lead the design and implementation of cutting-edge data architectures using AWS technologies such as Redshift, S3, Lambda, Glue, Step Functions, and Matillion. Your role will include liaising with stakeholders to shape technical solutions, driving delivery excellence, and ultimately empowering clients to take ownership of their platforms.


We're looking for someone who thrives on complex challenges, is highly self-motivated, and values a collaborative, knowledge-sharing culture. You’ll also play a key part in mentoring other engineers and contributing to best practices in data engineering and DevOps.


What You’ll Bring

  • Strong hands-on experience with AWS data services – especially Redshift, Glue, and S3
  • Strong consulting experience - strong stakeholder management and experience leading large teams
  • Heavy involvement in RFI + RFPs
  • Proficiency in data integration/ETL development, including ELT patterns and hands-on experience with Matillion
  • Skilled in handling structured and unstructured data (JSON, XML, Parquet, etc.)
  • Comfortable working in Linux and cloud-native environments
  • Strong SQL skills and experience with relational databases
  • Knowledge of CI/CD processes and infrastructure-as-code principles
  • Experience with data cleansing, metadata management, and data dictionaries
  • Familiar with modern data visualisation tools (e.g. QuickSight, Tableau, Looker, QlikSense)


Desirable Skills

  • Exposure to large-scale data processing tools (Spark, Hadoop, MapReduce)
  • Public sector experience
  • Experience building APIs to serve data
  • Familiarity with other public cloud platforms and data lakes
  • AWS certifications (e.g. Solutions Architect Associate, Big Data Specialty)
  • Interest or experience in Machine Learning


If you're ready to bring your data engineering expertise to the next level and help shape solutions that matter, we’d love to hear from you.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.