Senior Data Engineer

Manchester
7 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer - Greater Manchester

An exciting opportunity has arisen for a Senior Data Engineer to join my client’s dynamic and growing data team. In this role, you will work across the full data lifecycle—streaming, enrichment, and curation—within a cloud-based environment. You will be responsible for ensuring data quality, integrating key data sets, and supporting the insights and data science teams.

As part of this role, you will also develop your expertise in Artificial Intelligence (AI) and Machine Learning (ML), with access to advanced training in ML Ops. Additionally, you will play a key role in mentoring and developing junior data engineers.

Key Responsibilities:

Automate and maintain data pipelines within a cloud-based environment (AWS/GCP/Azure).

Source and verify data from multiple sources, ensuring it is ready for ingestion.

Gain experience in data infrastructure and contribute to the development of new cloud-based methodologies.

Analyse large datasets using Python and SQL.

Set up new pipelines for data streaming, enrichment, and curation.

Manage and maintain source code repositories (GitHub).

Investigate and apply AI/ML solutions to enhance cloud capabilities.

Key Skills & Experience:

Strong proficiency in SQL and Python.

Experience in cloud data solutions (AWS, GCP, or Azure).

Experience in AI/ML.

Experience with PySpark or equivalent.

Strong problem-solving and analytical skills.

Excellent attention to detail.

Ability to manage stakeholder relationships effectively.

Strong communication skills and a collaborative approach.

Why Join Us?

Work with cutting-edge technologies in cloud data engineering and AI/ML.

Opportunity for career growth and professional development.

Be part of an innovative and forward-thinking data team.

If you are a motivated Senior Data Engineer with a passion for cloud technologies, AI, and data analytics, we’d love to hear from you.

Interested? Please Click Apply Now!

Senior Data Engineer - Greater Manchester

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.