National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Data Architect - Databricks

Latchmere
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Engineer

Senior Data Engineer (Power Apps)

Senior Data Engineer (Marketing & Digital)

Senior Data Engineer

Senior Data Engineer

Job Title: Data Architect – Databricks Specialist
Location: Remote (UK-based candidates preferred)
Engagement: Contract - Status determination TBC 
Start Date: ASAP
Sector: Financial Services / Consultancy

About the Role We’re looking for an experienced Data Architect with deep expertise in Databricks to join a high-profile data transformation programme within a leading financial consultancy. You will be instrumental in the design and delivery of a scalable, secure, and high-performing data platform leveraging the Databricks Lakehouse architecture.
This is a critical project where you’ll step into a mature environment, helping to define architectural direction and ensure best practices in data engineering, governance, and performance optimisation.

Key Responsibilities
Lead the architecture and design of a next-gen data platform using Databricks and Delta Lake
Collaborate with stakeholders including data engineers, analysts, and business leads to define data requirements and architecture patterns
Ensure the platform is scalable, secure, and aligned to financial regulatory standards
Develop architectural artefacts (diagrams, documentation, guidelines)
Provide technical leadership and mentorship to engineering teams
Champion best practices in data quality, lineage, governance, and performance tuning
Integrate with a wider Azure ecosystem (e.g. Azure Data Lake, Synapse, Power BI)Required Skills & Experience
Proven experience as a Data Architect in enterprise environments
Extensive hands-on experience with Databricks (including SQL, PySpark, Delta Lake)
Solid background in data warehousing, data lakes, and big data frameworks
Strong knowledge of Azure cloud services, especially in data integration
Experience working in regulated environments (e.g. financial services, insurance, banking)
Excellent communication skills, capable of engaging with technical and non-technical stakeholders alike
Comfortable working in agile, fast-paced delivery environmentsNice to Have
Familiarity with CI/CD pipelines, Infrastructure as Code (e.g. Terraform, ARM)
Exposure to data governance tools like Unity Catalog, Purview, Collibra
Knowledge of data privacy regulations (GDPR, financial compliance)Why Join?
Join a respected financial consultancy at the forefront of data innovation
Work on a greenfield Databricks implementation with high visibility
Collaborate with top-tier engineering and architecture professionals
Long-term potential with future project opportunities

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.