Senior Data Architect

CereCore
Leeds
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Architect

Senior Data Scientist

Senior Data Engineer_London_Hybrid

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

CereCore was formed in 2001 as a shared service business within a large hospital operator. We focus solely on helping healthcare organisations align business and IT strategies to improve processes and patient care. At CereCore, our heart for healthcare is interconnected with our knowledge of technical solutions, creating a vital link that ultimately drives the delivery of high-quality care. We are a wholly-owned subsidiary of Hospital Corporation of America (HCA) Healthcare.


CereCore is seeking aSenior Data Architecton a consultancy basis to work with us periodically within specific data management projects.


This individual will play a key role inarchitecting the data transformation strategy, ensuring data governance, and aligning Epic Caboodle’s proprietary data structures with OMOP’s standardised model. They will work closely withdata engineers, clinicians, and IT teamsto ensure a seamless migration that enhances data accessibility for research and analytics.


Responsibilities:

  • Design and oversee thedata migration strategyfromEpic Caboodle to OMOP CDM, ensuring scalability, security, and compliance.
  • Define and implementdata standardisation processes, mappingEpic-specific codes to SNOMED, RxNorm, and LOINC.
  • Lead thedevelopment of ETL frameworks, ensuring efficient extraction, transformation, and loading of clinical data.
  • Establishdata governance protocols, ensuring compliance withGDPR, NHS data security regulations, and best practices.
  • Collaborate withdata engineers, clinicians, and research teamsto ensure data usability and alignment with research needs.
  • Optimisecloud-based data infrastructureusingAWS, Azure, or Snowflaketo support high-performance analytics.
  • Support the implementation ofOMOP tools (ATLAS, Achilles, Usagi)for querying and analysis.
  • Provide technical leadership and mentorship todata engineers and analysts, ensuring best practices in data architecture and governance.
  • Work closely with NHS and regulatory bodies to ensure compliance withhealthcare data standards and interoperability requirements.


Requirements:

  • 10+ yearsindata architecture, healthcare informatics, or clinical data management.
  • Strong experience withEpic Caboodle, Clarity, or Chroniclesdata models.
  • Proven expertise inOMOP CDM implementationandstandardised healthcare vocabularies (SNOMED, RxNorm, LOINC).
  • Advanced knowledge ofSQL, Python, Spark, or Apache Airflowfor ETL development.
  • Hands-on experience withcloud data platforms(AWS, Azure, Snowflake, or Google BigQuery).
  • Deep understanding ofNHS data governance, IG regulations, and security protocols.
  • Experience working with clinical and research teams to supporthealthcare analytics and machine learning initiatives.
  • Strong problem-solving skills with the ability to manage risks and ensure project success.
  • Excellentcommunication and stakeholder managementskills.


Desirable Skills:

  • Familiarity withFHIR, HL7, and other healthcare interoperability standards.
  • Experience working withoncology or myeloma datasets.
  • Hands-on experience withdata anonymisation and pseudonymisationfor research compliance.


CereCore is committed to sustaining a workforce that reflects the diversity of the global customers and communities we serve, and to create a fair and inclusive culture that enables all our employees to feel valued, respected and engaged. We are an equal-opportunity employer. We provide equal opportunities without regard to race, colour, religion, gender, sexual orientation, gender identity, gender expression, pregnancy, marital status, national origin, citizenship, covered veteran status, ancestry, age, physical or mental disability, medical condition, genetic information, or any other legally protected status in accordance with applicable local, state, federal laws or other laws.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!