National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Data Architect

CereCore
Liverpool
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Architect

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

CereCore was formed in 2001 as a shared service business within a large hospital operator. We focus solely on helping healthcare organisations align business and IT strategies to improve processes and patient care. At CereCore, our heart for healthcare is interconnected with our knowledge of technical solutions, creating a vital link that ultimately drives the delivery of high-quality care. We are a wholly-owned subsidiary of Hospital Corporation of America (HCA) Healthcare.


CereCore is seeking aSenior Data Architecton a consultancy basis to work with us periodically within specific data management projects.


This individual will play a key role inarchitecting the data transformation strategy, ensuring data governance, and aligning Epic Caboodle’s proprietary data structures with OMOP’s standardised model. They will work closely withdata engineers, clinicians, and IT teamsto ensure a seamless migration that enhances data accessibility for research and analytics.


Responsibilities:

  • Design and oversee thedata migration strategyfromEpic Caboodle to OMOP CDM, ensuring scalability, security, and compliance.
  • Define and implementdata standardisation processes, mappingEpic-specific codes to SNOMED, RxNorm, and LOINC.
  • Lead thedevelopment of ETL frameworks, ensuring efficient extraction, transformation, and loading of clinical data.
  • Establishdata governance protocols, ensuring compliance withGDPR, NHS data security regulations, and best practices.
  • Collaborate withdata engineers, clinicians, and research teamsto ensure data usability and alignment with research needs.
  • Optimisecloud-based data infrastructureusingAWS, Azure, or Snowflaketo support high-performance analytics.
  • Support the implementation ofOMOP tools (ATLAS, Achilles, Usagi)for querying and analysis.
  • Provide technical leadership and mentorship todata engineers and analysts, ensuring best practices in data architecture and governance.
  • Work closely with NHS and regulatory bodies to ensure compliance withhealthcare data standards and interoperability requirements.


Requirements:

  • 10+ yearsindata architecture, healthcare informatics, or clinical data management.
  • Strong experience withEpic Caboodle, Clarity, or Chroniclesdata models.
  • Proven expertise inOMOP CDM implementationandstandardised healthcare vocabularies (SNOMED, RxNorm, LOINC).
  • Advanced knowledge ofSQL, Python, Spark, or Apache Airflowfor ETL development.
  • Hands-on experience withcloud data platforms(AWS, Azure, Snowflake, or Google BigQuery).
  • Deep understanding ofNHS data governance, IG regulations, and security protocols.
  • Experience working with clinical and research teams to supporthealthcare analytics and machine learning initiatives.
  • Strong problem-solving skills with the ability to manage risks and ensure project success.
  • Excellentcommunication and stakeholder managementskills.


Desirable Skills:

  • Familiarity withFHIR, HL7, and other healthcare interoperability standards.
  • Experience working withoncology or myeloma datasets.
  • Hands-on experience withdata anonymisation and pseudonymisationfor research compliance.


CereCore is committed to sustaining a workforce that reflects the diversity of the global customers and communities we serve, and to create a fair and inclusive culture that enables all our employees to feel valued, respected and engaged. We are an equal-opportunity employer. We provide equal opportunities without regard to race, colour, religion, gender, sexual orientation, gender identity, gender expression, pregnancy, marital status, national origin, citizenship, covered veteran status, ancestry, age, physical or mental disability, medical condition, genetic information, or any other legally protected status in accordance with applicable local, state, federal laws or other laws.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.

Top 10 Mistakes Candidates Make When Applying for Machine-Learning Jobs—And How to Avoid Them

Landing a machine-learning job in the UK is competitive. Learn the 10 biggest mistakes applicants make—plus tested fixes, expert resources and live links that will help you secure your next ML role. Introduction From fintechs in London’s Square Mile to advanced-research hubs in Cambridge, demand for machine-learning talent is exploding. Job boards such as MachineLearningJobs.co.uk list new vacancies daily, and LinkedIn shows more than 10,000 open ML roles across the UK right now. Yet hiring managers still reject most CVs long before interview—often for avoidable errors. Below are the ten most common mistakes we see, each paired with a practical fix and a live resource link so you can dive deeper.