Senior Consultant, Data Engineer, AI&Data, UKI, London

Ernst & Young Advisory Services Sdn Bhd
City of London
5 days ago
Create job alert
Senior Consultant, Data Engineer, AI&Data, UKI, London

Location: London


Other locations: Primary Location Only


Requisition ID: 1654633


At EY, we’re all in to shape your future with confidence.


We’ll help you succeed in a globally connected powerhouse of diverse teams and take your career wherever you want it to go.


Join EY and help to build a better working world.


Data Engineer Senior Consultant – Job Specification


Location: London


Position Overview

We are seeking a highly skilled Data Engineer Senior Consultant with hands‑on experience designing, building, and optimizing data solutions that enable advanced analytics and AI‑driven business transformation. This role requires expertise in modern data engineering practices, cloud platforms, and the ability to deliver robust, scalable data pipelines for diverse business domains such as finance, supply chain, energy, and commercial operations.


Your Client Impact

  • Design, develop, and deploy end‑to‑end data pipelines for complex business problems, supporting analytics, modernising data infrastructure and AI/ML initiatives.
  • Design and implement data models, ETL/ELT workflows, and data integration solutions across structured and unstructured sources.
  • Collaborate with AI engineers, data scientists, and business analysts to deliver integrated solutions that unlock business value.
  • Ensure data quality, integrity, and governance throughout the data lifecycle.
  • Optimize data storage, retrieval, and processing for performance and scalability on cloud platforms (Azure, AWS, GCP, Databricks, Snowflake).
  • Translate business requirements into technical data engineering solutions, including architecture decisions and technology selection.
  • Contribute to proposals, technical assessments, and internal knowledge sharing.
  • Data preparation, feature engineering, and MLOps activities to collaborate with AI engineers, data scientists, and business analysts to deliver integrated solutions.

Essential Qualifications

  • Degree or equivalent certification in Computer Science, Data Engineering, Information Systems, Mathematics, or related quantitative field.
  • Proven experience building and maintaining large‑scale data pipelines using tools such as Databricks, Azure Data Factory, Snowflake, or similar.
  • Strong programming skills in Python and SQL, with proficiency in data engineering libraries (pandas, PySpark, dbt).
  • Deep understanding of data modelling, ETL/ELT processes, and Lakehouse concepts.
  • Experience with data quality frameworks, data governance, and compliance requirements.
  • Familiarity with version control (Git), CI/CD pipelines, and workflow orchestration tools (Airflow, Prefect).

Soft Skills

  • Strong analytical and problem‑solving mindset with attention to detail.
  • Good team player with effective communication and storytelling with data and insights.
  • Consulting skills, including development of presentation decks and client‑facing documentation.

Preferred Criteria

  • Experience with real‑time data processing (Kafka, Kinesis, Azure Event Hub).
  • Knowledge of big data storage solutions (Delta Lake, Parquet, Avro).
  • Experience with data visualization tools (Power BI, Tableau, Looker).
  • Understanding of AI/ML concepts and collaboration with AI teams.

Preferred Qualifications

  • Certifications such as:
  • AWS Certified Data Analytics – Specialty
  • SnowPro Advanced: Data Engineer

EY is building a better working world by creating new value for clients, people, society and the planet, while building trust in capital markets.


Enabled by data, AI and advanced technology, EY teams help clients shape the future with confidence and develop answers for the most pressing issues of today and tomorrow.


EY teams work across a full spectrum of services in assurance, consulting, tax, strategy and transactions. Fueled by sector insights, a globally connected, multi-disciplinary network and diverse ecosystem partners, EY teams can provide services in more than 150 countries and territories.


#J-18808-Ljbffr

Related Jobs

View all jobs

(INV) Senior Consultant, Data Engineer, AI&Data, UKI

(INV) Senior Consultant, Data Engineer, AI&Data, UKI

Senior Consultant - AI & Data, Financial Services, Data Platforms, Data Engineer, BCM, Edinburgh

Senior Consultant - AI & Data, Financial Services, Data Platforms, Data Engineer, BCM, Edinburgh

Consultant - Senior Consultant, Palantir Foundry Data Engineer, AI & Data, Defence & Security

Consultant - Senior Consultant, Palantir Foundry Data Engineer, AI & Data, Defence & Security

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.