Senior Cloud Engineer (AWS)

Leatherhead
2 days ago
Create job alert

Senior Cloud Engineer (AWS)
Location: Leatherhead or Bristol
Working Pattern: 2 days on-site - Flexible hybrid working pattern with time split between the office, client sites, and working from home.
About the Role: We are seeking an experienced AWS Cloud Engineer to join a leading consultancy firm. This role involves accelerating the design and implementation of innovative cloud solutions for clients in defence, energy, and industry.
Role Overview: As a Senior Cloud Engineer, you will manage projects, taking technical ownership of custom software applications and data systems for complex STEM applications. You will work across various industries, ensuring the highest standards of development and protection for critical services and products.
Key Responsibilities:

Lead the design and deployment of complex cloud solutions on AWS.
Develop software applications and data systems from the ground up.
Manage and deliver projects, ensuring technical excellence.
Collaborate with clients to understand and meet their needs.
Implement and maintain containerized applications.
Present complex topics in an understandable way.
Utilize consultancy skills in stakeholder management and business development.Recent Projects:

Horizon scanning applications with graph databases, big datasets, and natural language processing in AWS.
Simulations of distributed autonomous systems architectures using Python, Kafka, and Azure.
Data processing applications for critical infrastructure using ASP.NET, Entity Framework, Postgres, and C#.Requirements:

Significant experience with AWS cloud solutions.
Proficiency in at least one object-oriented language (Python or C#).
Experience with containerization.
Strong interpersonal and consultancy skills.
Ability to present complex topics clearly.Preferred Qualifications:

AWS certifications.
Experience with Azure DevOps or similar.
Agile project management experience.
Database design and management (Relational or NoSQL).Benefits:

Competitive salary with yearly reviews.
25 days holiday + option to buy 5 additional days.
Flexible working arrangements.
Enhanced parental benefits.
Company pension scheme.
Professional development opportunities.
Life assurance and private healthcare.
Performance-linked bonus scheme.
Paid membership fees to professional institutions.
Cycle to work scheme and season rail ticket loan.
Additional optional benefits tailored to your needs.How to Apply: Want to find out more? Click Apply

Related Jobs

View all jobs

Senior Cloud Engineer (AWS)

Senior Software Engineers

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.