Senior Applied Scientist, Rufus Features Science

Amazon
London
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist - Customer-First ML & Insights

Senior Data Scientist (Applied AI)

Senior AI/ML Scientist, Applied NLP & Generative AI

AI Data Scientist: Applied Intelligence & Delivery

Senior Data Scientist

Senior Data Scientist – Production ML for Business Impact

We are looking for a passionate, talented, and inventive Senior Applied Scientist with a strong machine learning background and relevant industry experience to help build industry-leading multimodal language technology powering Rufus, our AI-driven search and shopping assistant, helping customers with their shopping tasks at every step of their shopping journey.

This role focuses on developing conversation-based, multimodal shopping experiences, utilizing multimodal large language models (MLLMs), generative AI, advanced machine learning (ML), and computer vision technologies.

Our mission in conversational shopping is to make it easy for customers to find and discover the best products to meet their needs by helping with their product research, providing comparisons and recommendations, answering textual and visual product questions, enabling shopping directly from images or videos, providing visual inspiration, and more. We do this by pushing the SoTA in Natural Language Processing (NLP), Generative AI, Multimodal Large Language Model (MLLM), Natural Language Understanding (NLU), Machine Learning (ML), Retrieval-Augmented Generation (RAG), Computer Vision, Responsible AI, LLM Agents, Evaluation, and Model Adaptation.

Key job responsibilities

As a Senior Applied Scientist on our team, you will be responsible for the research, design, and development of new AI technologies that will shape the future of shopping experiences. You will play a critical role in driving new ideas, roadmaps, aligning with stakeholders and partner teams, leading the development of multimodal conversational systems, building on large language models, information retrieval, recommender systems, knowledge graphs, and computer vision. You will handle Amazon-scale use cases with significant impact on our customers experiences. You will collaborate with scientists, engineers, and product partners locally and abroad.

You will:

  1. Take product ideas for new features and turn them into tech solution designs and roadmaps, evaluating the feasibility and scalability of possible solutions.
  2. Lead the development of scalable language model centric solutions for shopping assistant systems based on a rich set of structured and unstructured contextual signals using deep learning, ML, computer vision, and MLLM techniques, and considering memory, compute, latency, and quality.
  3. Drive end-to-end MLLM projects that have a high degree of ambiguity, scale, and complexity, developing the most critical or challenging parts of the systems yourself (hands on).
  4. Perform offline and A/B test experiments, optimize and deploy your models into production, working closely with software engineers.
  5. Establish automated processes for large-scale model development, model validation, and serving.
  6. Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports and publish your work at internal and external conferences.

About the team

You will be part of the Rufus Features Science team based in London, working alongside over 100 engineers, designers, and product managers, focused on shaping the future of AI-driven shopping experiences at Amazon. This team works on every aspect of the shopping experience, from understanding multimodal user queries to planning and generating answers that combine text, image, audio, and video.

Minimum Qualifications

  • PhD or Masters degree
  • Experience programming in Java, C++, Python, or related language
  • Experience with neural deep learning methods and machine learning
  • Experience with modeling tools such as R, scikit-learn, Spark MLLib, MxNet, Tensorflow, numpy, scipy, etc.
  • Experience with large scale distributed systems such as Hadoop, Spark, etc.
  • Experience with generative deep learning models like CNNs, GANs, VAEs, NF, and Bayesian networks
  • Experience developing and implementing deep learning algorithms, particularly with respect to computer vision algorithms, e.g., image captioning, segmentation, video processing
  • Experience leveraging and augmenting a large code base of computer vision or MLLM libraries to deliver new solutions.
  • Experience deploying solutions to AWS or other cloud platforms.
  • Excellent communication skills, solid work ethic, and a strong desire to write production-quality code.
  • Have publications at top-tier peer-reviewed conferences or journals.

Amazon is an equal opportunities employer. We believe passionately that employing a diverse workforce is central to our success. We make recruiting decisions based on your experience and skills. We value your passion to discover, invent, simplify, and build. Protecting your privacy and the security of your data is a longstanding top priority for Amazon.

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.

Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.

J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.