Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Applied Scientist, Rufus Features Science

Amazon
London
7 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer, Controllable GAIA

Senior Applied Data Scientist (FTC until end of March 2026)

Lead/Senior Data Scientist

Senior Research Scientist: Data Science and Machine Learning AIP

Senior Data Scientist (Lead/Principal Level Considered)

Senior Data Scientist - Fixed Term Contract

We are looking for a passionate, talented, and inventive Senior Applied Scientist with a strong machine learning background and relevant industry experience to help build industry-leading multimodal language technology powering Rufus, our AI-driven search and shopping assistant, helping customers with their shopping tasks at every step of their shopping journey.

This role focuses on developing conversation-based, multimodal shopping experiences, utilizing multimodal large language models (MLLMs), generative AI, advanced machine learning (ML), and computer vision technologies.

Our mission in conversational shopping is to make it easy for customers to find and discover the best products to meet their needs by helping with their product research, providing comparisons and recommendations, answering textual and visual product questions, enabling shopping directly from images or videos, providing visual inspiration, and more. We do this by pushing the SoTA in Natural Language Processing (NLP), Generative AI, Multimodal Large Language Model (MLLM), Natural Language Understanding (NLU), Machine Learning (ML), Retrieval-Augmented Generation (RAG), Computer Vision, Responsible AI, LLM Agents, Evaluation, and Model Adaptation.

Key job responsibilities

As a Senior Applied Scientist on our team, you will be responsible for the research, design, and development of new AI technologies that will shape the future of shopping experiences. You will play a critical role in driving new ideas, roadmaps, aligning with stakeholders and partner teams, leading the development of multimodal conversational systems, building on large language models, information retrieval, recommender systems, knowledge graphs, and computer vision. You will handle Amazon-scale use cases with significant impact on our customers experiences. You will collaborate with scientists, engineers, and product partners locally and abroad.

You will:

  1. Take product ideas for new features and turn them into tech solution designs and roadmaps, evaluating the feasibility and scalability of possible solutions.
  2. Lead the development of scalable language model centric solutions for shopping assistant systems based on a rich set of structured and unstructured contextual signals using deep learning, ML, computer vision, and MLLM techniques, and considering memory, compute, latency, and quality.
  3. Drive end-to-end MLLM projects that have a high degree of ambiguity, scale, and complexity, developing the most critical or challenging parts of the systems yourself (hands on).
  4. Perform offline and A/B test experiments, optimize and deploy your models into production, working closely with software engineers.
  5. Establish automated processes for large-scale model development, model validation, and serving.
  6. Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports and publish your work at internal and external conferences.

About the team

You will be part of the Rufus Features Science team based in London, working alongside over 100 engineers, designers, and product managers, focused on shaping the future of AI-driven shopping experiences at Amazon. This team works on every aspect of the shopping experience, from understanding multimodal user queries to planning and generating answers that combine text, image, audio, and video.

Minimum Qualifications

  • PhD or Masters degree
  • Experience programming in Java, C++, Python, or related language
  • Experience with neural deep learning methods and machine learning
  • Experience with modeling tools such as R, scikit-learn, Spark MLLib, MxNet, Tensorflow, numpy, scipy, etc.
  • Experience with large scale distributed systems such as Hadoop, Spark, etc.
  • Experience with generative deep learning models like CNNs, GANs, VAEs, NF, and Bayesian networks
  • Experience developing and implementing deep learning algorithms, particularly with respect to computer vision algorithms, e.g., image captioning, segmentation, video processing
  • Experience leveraging and augmenting a large code base of computer vision or MLLM libraries to deliver new solutions.
  • Experience deploying solutions to AWS or other cloud platforms.
  • Excellent communication skills, solid work ethic, and a strong desire to write production-quality code.
  • Have publications at top-tier peer-reviewed conferences or journals.

Amazon is an equal opportunities employer. We believe passionately that employing a diverse workforce is central to our success. We make recruiting decisions based on your experience and skills. We value your passion to discover, invent, simplify, and build. Protecting your privacy and the security of your data is a longstanding top priority for Amazon.

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.

Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.

J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.