Senior Applied Data Scientist

Tbwa Chiat/Day Inc
London
5 days ago
Create job alert

dunnhumbyis the global leader in Customer Data Science, empowering businesses everywhere to compete and thrive in the modern data-driven economy. We always put the Customer First.

Our mission:to enable businesses to grow and reimagine themselves by becoming advocates and champions for their Customers. With deep heritage and expertise in retail – one of the world’s most competitive markets, with a deluge of multi-dimensional data – dunnhumby today enables businesses all over the world, across industries, to be Customer First.

dunnhumbyemploys nearly 2,500 experts in offices throughout Europe, Asia, Africa, and the Americas working for transformative, iconic brands such as Tesco, Coca-Cola, Meijer, Procter & Gamble and Metro.

We’re looking for a Senior Applied Data Scientist who expects more from their career. It’s a chance to apply your expertise to distil complex problems into compelling insights using the best of machine learning and human creativity to deliver effective and impactful solutions for clients. Joining our advanced data science team, you’ll investigate, develop, implement and deploy a range of complex applications and components while working alongside super-smart colleagues challenging and rewriting the rules, not just following them. Our team is focused on delivering great insights to Tesco UK using the wealth of transactional and clickstream data. We work collaboratively with our client leadership teams to answer client questions and build solutions that are re-usable and scalable.

What we expect from you

  1. Degree in Statistics, Maths, Physics, Economics or similar field
  2. Programming skills (Python and SQL are a must have, Pyspark is recommended)
  3. Analytical Techniques and Technology
  4. Experience with and passion for connecting your work directly to the customer experience, making a real and tangible impact.
  5. Logical thinking and problem solving
  6. Statistical Modelling and experience of applying data science into client problems

What you can expect from us

We won’t just meet your expectations. We’ll defy them. So you’ll enjoy the comprehensive rewards package you’d expect from a leading technology company. But also, a degree of personal flexibility you might not expect. Plus, thoughtful perks, like flexible working hours and your birthday off.

You’ll also benefit from an investment in cutting-edge technology that reflects our global ambition. But with a nimble, small-business feel that gives you the freedom to play, experiment and learn.

And we don’t just talk about diversity and inclusion. We live it every day – with thriving networks including dh Gender Equality Network, dh Proud, dh Family, dh One and dh Thrive as the living proof. Everyone’s invited.

Our approach to Flexible Working

At dunnhumby, we value and respect difference and are committed to building an inclusive culture by creating an environment where you can balance a successful career with your commitments and interests outside of work.

We believe that you will do your best at work if you have a work / life balance. Some roles lend themselves to flexible options more than others, so if this is important to you please raise this with your recruiter, as we are open to discussing agile working opportunities during the hiring process.

#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Applied Data Scientist

Lead / Senior Applied Data Scientist - Causal AI for Demand Forecasting

Senior Applied Scientist - Computer Vision

Applied Data Scientist

Applied Scientist II - Computer Vision

Applied Scientist II - Computer Vision

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.