Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Analyst Product Control - Client modelling

FNZ
London
8 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Analyst - Fraud Analytics

Data Analyst

Data Analyst

Senior Data Scientist

Lead Content Data Analyst

Alpha Data Services, Performance Ready Data Analyst, EMEA Lead, Vice President

Location:Edinburgh or London

Working Pattern:Hybrid

Contract:Permanent

Role Overview:

We are seeking aSenior Analystto join our Product Control team, taking a pivotal role in overseeing modeling risk across FNZ Group. This position offers a unique opportunity to collaborate with cross-functional teams, enhance financial control frameworks, and provide actionable insights that drive strategic business decisions.

Key Responsibilities:

  • Senior analyst in a fully functioning Product Control team with responsibility for providing oversight of modelling risk across FNZ Group.
  • Partner with risk managers, and financial controllers to implement and maintain robust control frameworks.
  • Partner with modelling teams to enhance capability, accuracy and usability of models.
  • Monitor and reconcile financial product valuations, identifying and resolving discrepancies.
  • Validate pricing models for financial instruments and ensure alignment with accounting and regulatory standards.
  • Evaluate the financial performance of products and provide actionable insights to drive business strategy.
  • Oversee financial risk models, primarily business plan and customer profitability models as well as credit, market, operational, and liquidity risk models.
  • Conduct scenario analysis, stress testing, and sensitivity analysis to assess and predict financial risks including input into regulatory processes/reporting.
  • Provide regular reports and insights to senior leadership, highlighting emerging risks and their potential impact.
  • Model Risk Management (including statistical, advanced AI/ML based techniques) - Formulation of guidelines/policy, Laying down of Roadmap, Establishment of model risk governance including frameworks, validation, inventory management, attestations and optimization.
  • Program/Delivery Management – Create project plans and coordinate with key stakeholders.
  • Collaborate with stakeholders to integrate advanced analytics and machine learning into risk modeling processes.

Desired Qualifications and Skills:

Education:

  • Bachelor’s or master’s degree in finance, Economics, Mathematics, Engineering, or a related field.
  • Qualified accountant (and >2 years post qualified).

Experience:

  • 2+ years of experience in financial risk modeling, product control, or a similar role in banking, financial services, or fintech.
  • Strong understanding of financial instruments, derivatives, and risk management principles.

Technical Skills:

  • Advanced knowledge of Excel and experience with financial systems (e.g., Bloomberg, Reuters, or similar).
  • Familiarity with accounting principles (e.g., IFRS, GAAP) and regulatory requirements (e.g., Basel III, IFRS 9).
  • Statistical Techniques:Linear & Logistic Regression, Hypothesis Testing, Exploratory Data Analysis, Survival Analysis, Cluster Analysis, various Statistical Tests and Cross-Validation Techniques, ML Algorithms.
  • Proficiency in programming languages like Python, R, or MATLAB for quantitative modeling.

Soft Skills:

  • Strong analytical and problem-solving skills with attention to detail.
  • Ability to work collaboratively in a fast-paced and dynamic environment.

This is an exciting opportunity for an experienced and driven professional to play a key role in shaping the future of financial risk management and product control at FNZ. If you thrive in a dynamic environment, excel at solving complex challenges, and have a passion for driving strategic business outcomes, we encourage you to apply.

Application Deadline:31/01/2025

About FNZ:

FNZ is committed to opening up wealth so that everyone, everywhere can invest in their future on their terms. We know the foundation to do that already exists in the wealth management industry, but complexity holds firms back.

We created wealth’s growth platform to help. We provide a global, end-to-end wealth management platform that integrates modern technology with business and investment operations. All in a regulated financial institution.

We partner with over 650 financial institutions and 12,000 wealth managers, with US$1.5 trillion in assets under administration (AUA).

Together with our customers, we help over 20 million people from all wealth segments to invest in their future.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.