Senior Analyst and Data Specialist

Sutton
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Analyst & Data Specialist

Senior Data Analyst - Trading Data Specialist EMEA (F/M/D)

Senior Data Analyst

Senior Data Analyst

Senior Data Analyst

Service Coordinator / Service Planner (Training)

Senior Analyst & Data Specialist
Location: Sutton
Working style: Hybrid

About the Role:
In this role, the successful candidate will play a key part in supporting data projects, providing expertise in database development, data security, and documentation. Working closely with the wider data project team, you will help implement a new core platform and support the Finance Domain's reporting requirements. You will interpret raw data, transforming it into actionable insights for senior stakeholders. This role involves daily collaboration with the Data Architect, Head of Data and Analytics, and the Director of Finance, Risk, and Compliance.

Key Responsibilities:

Perform advanced data analysis on large datasets to extract actionable insights.
Identify/interpret trends, patterns and correlations to support strategic and operational decision-making.
Conduct detailed analyses across the business, producing clear, informative outputs and making recommendations that influence key business decisions.
Create clear and concise visualisations to communicate data insights to both technical and non-technical stakeholders.
Automate reporting processes to enhance efficiency and accuracy.
Collaborate with product, marketing, finance, and operations teams to identify data-driven business opportunities.
Translate business requirements into technical specifications for data extraction and analysis.
Develop methods to ensure data integrity, accuracy, and consistency.
Establish and promote best practices for data management, storage, and security.
Work with IT and Data Engineering teams to optimise data pipelines and infrastructure.

You will need:

Experience in a senior Business Intelligence role, preferably within the finance industry.
Strong SQL skills within a reporting environment.
Proficiency with business reporting software solutions (Power BI preferred).
Detail-oriented approach, with a focus on delivering high-quality, accurate work.
Ability to manage multiple projects and work under tight deadlines when needed.

Desirable Requirements:

Experience with cloud platforms such as AWS, Google Cloud and Azure (or other similar systems)
Knowledge of data governance and compliance regulations (e.g., GDPR).

Additional Information:
The company we are partnered with will not be providing sponsorship for this role.

Inventum Group is passionate about equity, diversity and inclusion. We seek individuals from the widest talent pool and encourage underrepresented talent to apply for vacancies with us. We are committed to recruitment processes that are fair for all, regardless of background and personal characteristics. If you require any adjustments to apply for a role with us, please let us know in whatever way suits you best. Inventum Group is a Recruitment and ED&I Consultancy Business.

Inventum Group is acting as an Employment Agency in relation to this vacancy

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.