National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Analyst and Data Specialist

Sutton
4 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Analyst

Senior Data Analyst - Customer Experience

Senior Data Analyst

Senior Business Analyst

Senior Pricing Analyst (Risk)

Senior Safety Specialist (Data Analyst)

Senior Analyst & Data Specialist
Location: Sutton
Working style: Hybrid

About the Role:
In this role, the successful candidate will play a key part in supporting data projects, providing expertise in database development, data security, and documentation. Working closely with the wider data project team, you will help implement a new core platform and support the Finance Domain's reporting requirements. You will interpret raw data, transforming it into actionable insights for senior stakeholders. This role involves daily collaboration with the Data Architect, Head of Data and Analytics, and the Director of Finance, Risk, and Compliance.

Key Responsibilities:

Perform advanced data analysis on large datasets to extract actionable insights.
Identify/interpret trends, patterns and correlations to support strategic and operational decision-making.
Conduct detailed analyses across the business, producing clear, informative outputs and making recommendations that influence key business decisions.
Create clear and concise visualisations to communicate data insights to both technical and non-technical stakeholders.
Automate reporting processes to enhance efficiency and accuracy.
Collaborate with product, marketing, finance, and operations teams to identify data-driven business opportunities.
Translate business requirements into technical specifications for data extraction and analysis.
Develop methods to ensure data integrity, accuracy, and consistency.
Establish and promote best practices for data management, storage, and security.
Work with IT and Data Engineering teams to optimise data pipelines and infrastructure.

You will need:

Experience in a senior Business Intelligence role, preferably within the finance industry.
Strong SQL skills within a reporting environment.
Proficiency with business reporting software solutions (Power BI preferred).
Detail-oriented approach, with a focus on delivering high-quality, accurate work.
Ability to manage multiple projects and work under tight deadlines when needed.

Desirable Requirements:

Experience with cloud platforms such as AWS, Google Cloud and Azure (or other similar systems)
Knowledge of data governance and compliance regulations (e.g., GDPR).

Additional Information:
The company we are partnered with will not be providing sponsorship for this role.

Inventum Group is passionate about equity, diversity and inclusion. We seek individuals from the widest talent pool and encourage underrepresented talent to apply for vacancies with us. We are committed to recruitment processes that are fair for all, regardless of background and personal characteristics. If you require any adjustments to apply for a role with us, please let us know in whatever way suits you best. Inventum Group is a Recruitment and ED&I Consultancy Business.

Inventum Group is acting as an Employment Agency in relation to this vacancy

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.