Senior AI Research Scientist

ZipRecruiter
London
10 months ago
Applications closed

Related Jobs

View all jobs

Senior NLP & AI Research Scientist - Hybrid

Senior ML/NLP Research Scientist — Hybrid (3 onsite / 2 remote)

Senior RF AI/ML Data Scientist — DSP & SDR Onsite

Senior Data Scientist - NLP AI Research

Senior Data Scientist Research Engineer

Senior Machine Learning Engineer

Job Description

About the job

Adamas Knight is recruiting for a groundbreaking AI Lab, backed by some of the biggest names in industry, working on building their own proprietary foundation model within the multi-modal domain - text and vision.

With one of the best compute in industry, they are looking for a senior RS that has been a core contributor to the pre- or post-training of an impactful large multimodal model to lead this whole initiative.

The Role

As aSenior Research Scientist, you will be at the forefront of developing large-scale, multimodal deep learning models from scratch. You will design and implement novel architectures capable of integrating diverse types of data, such as images, text, and structured information, to enable advanced, multi-faceted insights. Your work will involve exploring and experimenting with state-of-the-art techniques in deep learning, such as transformers, neural architecture search, and multimodal fusion, to create models that can handle complex, real-world tasks. You will push the boundaries of model performance, scalability, and generalization, laying the foundation for future breakthroughs in multimodal AI.

Benefits/Perks:

  • Attractive Compensation: Enjoy a competitive salary and the opportunity to invest in your future with equity in the company.
  • Comprehensive Benefits: Access private healthcare, a gym allowance, and catered lunches to support your well-being.
  • Work-Life Balance: Benefit from flexible working hours that fit your lifestyle.

At Adamas Knight, we are committed to creating an inclusive culture. We do not discriminate based on veteran status or any other legally protected status. Diversity is highly valued, and we encourage applicants from all backgrounds to apply.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.