Senior AI Engineer

Dublin
1 year ago
Applications closed

Related Jobs

View all jobs

Senior AI Engineer | GenAI | Information Retrieval | ML | NLP | Hybrid London | Up to £130k

Senior AI Engineer | GenAI | Information Retrieval | ML | NLP | Hybrid London | Up to £130k

Senior AI Engineer NLP/LLM, Remote, £70k-£80k + Healthcare

Senior AI & Data Engineer - FS Data Platforms

Senior AI Software Engineer - Gen AI & NLP

Senior AI MLOps Platform Engineer - Scale Resilient Cloud

Senior AI Engineer

Location: Dublin
Salary: €(phone number removed)

Hybrid

Reperio have partnered with a fast growing tech company in Dublin who are seeking an experienced AI Engineer to join their high-performing AI team. The successful candidate will design, develop, and deploy state-of-the-art AI models and systems models for tasks such as NLP, computer vision, predictive analytics, or other AI applications. You will collaborate with cross-functional teams to integrate AI solutions into real-world applications, driving measurable impact for our products and clients.

Requirements:

Bachelor's or Master's degree in Computer Science, Data Science, Engineering, or a related field.
5+ years of experience as an AI/ML Engineer, Data Scientist or a similar role.
Strong programming skills in Python (or similar) with experience in AI/ML libraries such as TensorFlow, PyTorch, or scikit-learn.
Proficiency in working with cloud platforms (e.g., AWS, Azure, GCP) for AI development and deployment.
Some experience in LLM deployment.
Strong understanding of NLP and GenAI.Nice to have:

Ph.D. in a relevant field or equivalent experience in AI research.
Familiarity with big data tools (e.g., Hadoop, Spark) and database technologies (e.g., SQL, NoSQL).
Knowledge of MLOps practices for model deployment and lifecycle management.Benefits

Pension
Health and life insurance
Lucrative bonus structureIf this role as a Senior AI Engineer interests and suits you, then apply using the link below. If you require any further information, get in touch with Jamie Sadlier at Reperio.

Reperio Human Capital acts as an Employment Agency and an Employment Business

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.