Senior AI Data Scientist

Halliburton Energy Services
Abingdon
1 week ago
Create job alert

We are looking for the right people — people who want to innovate, achieve, grow and lead. We attract and retain the best talent by investing in our employees and empowering them to develop themselves and their careers. Experience the challenges, rewards and opportunity of working for one of the world’s largest providers of products and services to the global energy industry.


Job Duties
About the Role

We are seeking a highly skilled and motivated Senior AI Data Scientist to join our Subsurface team at our Abingdon office in Oxfordshire. This is a unique opportunity to apply advanced data science techniques to geological and geospatial challenges, helping us unlock insights from complex subsurface data.


Key Responsibilities

  • Collaborate with geoscientists and engineers to understand requirements and design effective solutions
  • Develop robust Python pipelines for data manipulation
  • Implement secure coding practices and manage version control using Git
  • Work with cloud platforms (AWS and Azure) to scale data workflows and manage infrastructure
  • Optimize database performance and spatial queries using PostgreSQL/PostGIS
  • Champion Python best practices across the team and support the development of junior team members

Required Qualifications

  • Honors degree (2:1 or above) in data science/AI or related field.
  • Minimum of 10 years related work experience.

Desirable Qualifications

  • Postgraduate qualification in AI or related field
  • Proficiency in Python, with a strong adherence to Python best practices
  • Experience using Git for version control and collaboration
  • Knowledge of secure coding principles
  • Expertise in geospatial libraries such as GeoPandas, Shapely, and GDAL
  • Advanced knowledge of PostgreSQL/PostGIS for spatial data management
  • Experience with AWS and Azure platforms, including AI services (e.g., AWS SageMaker, Azure ML)
  • Proven experience developing or deploying AI models across domains such as natural language processing, computer vision, or predictive analytics
  • Familiarity with machine learning frameworks (e.g., TensorFlow, PyTorch, Scikit-learn) and data science tools (e.g., Jupyter, Pandas, NumPy)
  • Ability to design, train, and evaluate supervised and unsupervised learning algorithms
  • Strong teamwork and interpersonal skills, with a collaborative and agile mindset
  • Proven ability to work within agile development environments
  • Self‑motivated, detail-oriented, and capable of managing multiple tasks
  • Knowledge of geological or subsurface data domains
  • Experience with containerization tools such as Docker and Kubernetes
  • Familiarity with CI/CD pipelines for automated deployment
  • Understanding of data governance and compliance in scientific environments
  • Experience with database virtualisation, including DecisionSpace integration server
  • Experience with data analysis applications from the Neftex Predictions portfolio

Halliburton is an Equal Opportunity Employer. Employment decisions are made without regard to race, color, religion, disability, genetic information, pregnancy, citizenship, marital status, sex/gender, sexual preference/ orientation, gender identity, age, veteran status, national origin, or any other status protected by law or regulation


Location

97 Jubilee Avenue, Milton Park,Abingdon,Oxfordshire,OX14 4RW, United Kingdom


Requisition Number: 204382


Experience Level:Entry-Level


Job Family:Engineering/Science/Technology


Product Service Line: [[division]]


Full Time / Part Time:Full Time


Compensation Information

Compensation is competitive and commensurate with experience.


Job Segment: Database, GIS, Cloud, Data Analyst, Data Management, Technology, Data


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior AI Data Scientist

Senior AI Data Scientist

Senior AI Data Scientist

Senior AI Data Scientist – Public Sector Innovator

Senior AI Data Scientist — Subsurface Geospatial

Senior AI Data Scientist - Subsurface Geospatial & Cloud

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.