Senior Aerodynamics Engineer - CFD

Sunbury-on-Thames
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Security Architect

Senior Pricing Analyst

Senior Reporting Analyst

Senior Data Engineer

Senior Data Engineer - Databricks

Senior Software Engineer (GO/PHP)

NEW SENIOR AERODYNAMICS ENGINEER - CFD JOB AVAILABLE NEAR SUNBURY-ON-THAMES, SURREY

  • Hybrid Working – Flexible hours + 1 day WFH or extra annual leave

  • Cutting-edge Research and Product Development

  • Great company culture with a collaborative, multi-disciplinary team

  • Private healthcare, life assurance, and more

    THE COMPANY OVERVIEW
    We’re on the lookout for a bright and curious Senior Aerodynamics Engineer to join a pioneering technology business based near Sunbury-on-Thames, Surrey. With over two decades of expertise in ultrasonic wind sensing, this company has built a strong global reputation in wind energy, meteorology, marine and defence markets.

    Working with a highly talented team of engineers and scientists across the UK and Europe, they are constantly innovating — blending computational fluid dynamics, acoustics, and data science to push the boundaries of sensor performance. With recent company growth and investment, now is the perfect time to join the next phase of their R&D journey.

    THE JOB
    As a Senior Aerodynamics Engineer, you’ll play a key role in the research team, focusing on the development, optimisation, and validation of sensor performance through advanced CFD modelling and experimentation. This will include analysing aerodynamic, aeroacoustic, and thermal behaviours, creating multi-physics models, and supporting the development of digital twin technologies.

    You’ll also take ownership of research projects (or sub-projects), work collaboratively with cross-functional teams, and contribute to the company’s IP portfolio. Your work will directly impact the future direction of innovative wind sensing products.

    WHAT IS REQUIRED FROM YOU



An academic background in Aerodynamics or Aeronautics with a specialism in CFD

*

Significant post-doctoral or industry experience applying CFD modelling

*

Expertise in RANS, LES turbulence modelling, and aerothermal analysis

*

Experience validating CFD models with experimental data

*

Proven track record of publishing in peer-reviewed journals or international conferences

*

Proficient in Python (or similar) for data analysis

*

Strong communication skills and a creative, analytical mindset

*

Ability to work independently and lead on technical challenges

Desirable Skills

*

Specialisation in subsonic, transitional or separated flow

*

Experience with transition models and commercial CFD tools (e.g. ENGYS, COMSOL)

*

Exposure to Linux and high-performance computing environments

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.