Security Engineer, Senior, London, Bank 75k

Walbrook
10 months ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Data Engineer

Senior Data Engineer, Data & AI Governance

Senior Data Engineer: AWS Glue & Kafka Streaming Lakehouse

Senior Data Engineer

Security Engineer (Senior) is required by a Financial Brokerage based in the heart of the city of London, by Bank station paying up to £75k + Bonus + Bens - Hybrid role, 3 days min to be office based

This Senior IT Security Engineer role offers a unique chance to shape and enhance the security landscape of a forward-thinking organisation. Working closely with the Chief Information Security Officer (CISO) and a dedicated team of 3, this position allows you to make a tangible impact on security strategy and implementation.

Why This Role Stands Out:

  • Influence and Ownership: Take charge of critical aspects of cybersecurity, from network monitoring to cloud security design, and make strategic decisions that drive the company's security posture forward.

  • Professional Growth: Engage with cutting-edge technologies and methodologies, including AI, machine learning, and advanced analytics, ensuring you stay at the forefront of the cybersecurity field.

  • Collaborative Environment: Work alongside a team of skilled professionals and security partners, fostering a culture of continuous improvement and shared expertise.

  • Comprehensive Benefits: Enjoy a competitive salary, professional development opportunities, and a supportive work environment that values work-life balance.

    Key Responsibilities:

  • Maintain and monitor network and devices, ensuring robust security patching and vulnerability management.

  • Develop and implement information security policies, including business continuity and disaster recovery plans.

  • Provide hands-on expertise in cloud-based technologies (Azure, AWS) with a focus on security, performance, and scalability.

  • Design and conduct security testing and training for employees.

  • Perform risk assessments and analyse current security solutions, recommending enhancements.

  • Support the adoption of new security technologies and best practices.

  • Stay abreast of the latest cybersecurity threats, trends, and technologies.

    Qualifications:

  • Bachelor's degree in Technology, Cyber Security, IT, or a related field.
  • Over 4 years of experience in a cybersecurity engineering role.
  • Technical certifications such as CISSP, CISM, CEH preferred; AWS/Azure certifications highly desirable.
  • In-depth knowledge of network systems, security products, and solutions (e.g., SentinelOne, Crowdstrike, M365).
  • Proficiency in risk assessment tools and techniques.
  • Experience with firewalls, VPN solutions, and IDS.
  • Familiarity with cybersecurity frameworks and standards (NIST CSF, ISO 27001, PCI DSS, Mitre ATT&CK).
  • Strong problem-solving skills and the ability to work under pressure.
  • Effective communication and documentation skills.
  • Ability to manage multiple tasks in a fast-paced environment and work both independently and as part of a team.

    This role is more than just a job; it's a platform to make a significant impact in the cybersecurity domain.

    If you have the expertise and drive to excel in this dynamic field, consider this your next big career move

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.