Scientist, Data Science

Second Renaissance
Cambridge
1 week ago
Applications closed

Related Jobs

View all jobs

Data Scientist – Life (Hybrid, 12-month FTC)

Senior Data Scientist

Data Scientist Tesco Mobile

Data Scientist - Customer Insights & Production ML (Hybrid)

Data Scientist - End-to-End Analytics & Impact

Data Scientist Tesco Mobile

Our mission is to restore cell health and resilience through cell rejuvenation to reverse disease, injury, and the disabilities that can occur throughout life.

For more information, see our website at altoslabs.com.

## Our Value
Our Single Altos Value: Everyone Owns Achieving Our Inspiring Mission.

## Diversity at Altos
We believe that diverse perspectives are foundational to scientific innovation and inquiry. At Altos, exceptional scientists and industry leaders from around the world work together to advance a shared mission. Our intentional focus is on Belonging, so that all employees know that they are valued for their unique perspectives. We are all accountable for sustaining a diverse and inclusive environment.

- ## What You Will Contribute To Altos

We have an opportunity available for a Data Scientist to work in the field of cells, genomics and related areas.

Responsibilities

- Generate insights and models from multi-omics datasets (using public and internal data) to understand patterns, trends and relationships within data to inform decision-making and solve problems.

  • Design, develops and programs methods, processes, and systems to extract, consolidate and analyze unstructured, diverse “big data” sources to generate actionable insights.
  • Build databases and is responsible for the curation of Data, including experimental data management.
  • Extracting knowledge, insights and predictions from data using statistical methods, machine learning and data visualization.
  • Work with scientists to identify optimal ways to prepare, annotate, store and navigate their datasets, including data application design and improvement.
  • Define and document best practices for capturing and entering experimental metadata, and educate scientists and collaborators about these standards.
  • Build pipelines for quality control, processing and analysis of raw targeted and un-targeted datasets.
  • Develops and codes software programs and leverages algorithms and methodologies being developed by the scientific community for use cases of relevance to Altos Labs.
  • Stay current with and adopt emergent analytical methodologies, tools and applications to ensure fit-for-purpose and impactful approaches.
  • Partner closely with the Lab scientists and researchers to identify opportunities for data and insight mining to accelerate research.
  • Embed analyses and visualizations in automated reports.

    ## Who You Are

    #### Minimum Qualifications

    - PhD in interdisciplinary quantitative science such as Biology, Chemistry, Computer Science, Physics, etc.
  • Relevant work experience in either an academic or industry setting.
  • Working knowledge of cell biology and experience in large scale data analysis and statistical modeling on datasets like RNA-seq, ATAC-seq, protein network, pathways, etc.
  • Proven track record of completed scientific projects as evidenced by publications and preprints.
  • Strong breadth and expertise in Statistical analysis, machine learning, data visualization, programming (Python, R, etc.), data cleaning and data manipulation.
  • Tools: Python, R, SQL, TensorFlow, Scikit-learn, Tableau, Power BI.
  • Ability to generate high quality ideas and be self-driven to explore.
  • Strong experience in programming and comfortable modifying existing code-base. Experience with Python, R data cleaning and data manipulation or other related scientific languages.
  • Willing to work in a collaborative environment and share periodic updates across the company.

    #### Preferred Qualifications

    - Strong and demonstrable experience working in an AWS compute environment is a major advantage.
  • Experience integrating prior knowledge from public databases (e.g., KEGG) into omics data analysis pipelines.

    The salary range for Cambridge, UK:

    - Scientist I, Data Science: £64,600 - £87,400
  • Senior Scientist I, Data Science: £88,000 - £132,000

    Exact compensation may vary based on skills, experience, and location.

    Before submitting your application:

    - Please click here to read the Altos Labs EU and UK Applicant Privacy Notice ( bit.ly/eu_uk_privacy_notice )

    - This Privacy Notice is not a contract, express or implied and it does not set terms or conditions of employment.

    ## What We Want You To Know

    We are a culture of collaboration and scientific excellence, and we believe in the values of inclusion and belonging to inspire innovation.

    Altos Labs provides equal employment opportunities to all employees and applicants for employment and prohibits discrimination and harassment of any type without regard to race, color, religion, age, sex, national origin, disability status, genetics, protected veteran status, sexual orientation, gender identity or expression, or any other characteristic protected by federal, state or local laws.

    This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

    Altos currently requires all employees to be fully vaccinated against COVID-19, subject to legally required exemptions (e.g., due to a medical condition or sincerely-held religious belief).

    Thank you for your interest in Altos Labs where we strive for a culture of scientific excellence, learning, and belonging.

    Note: Altos Labs will not ask you to download a messaging app for an interview or outlay your own money to get started as an employee. If this sounds like your interaction with people claiming to be with Altos, it is not legitimate and has nothing to do with Altos. Learn more about a common job scam at https://www.linkedin.com/pulse/how-spot-avoid-online-job-scams-biron-clark/
    #J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.