Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Scientist, Data Science

Second Renaissance
Cambridge
4 weeks ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist - Drug Discovery

Lead Data Scientist - Drug Discovery

Lead Data Scientist - Drug Discovery

Lead Data Scientist - Drug Discovery

Lead Data Scientist - Drug Discovery

Lead Data Scientist - Drug Discovery

Our mission is to restore cell health and resilience through cell rejuvenation to reverse disease, injury, and the disabilities that can occur throughout life.

For more information, see our website at altoslabs.com.

## Our Value
Our Single Altos Value: Everyone Owns Achieving Our Inspiring Mission.

## Diversity at Altos
We believe that diverse perspectives are foundational to scientific innovation and inquiry. At Altos, exceptional scientists and industry leaders from around the world work together to advance a shared mission. Our intentional focus is on Belonging, so that all employees know that they are valued for their unique perspectives. We are all accountable for sustaining a diverse and inclusive environment.

- ## What You Will Contribute To Altos

We have an opportunity available for a Data Scientist to work in the field of cells, genomics and related areas.

Responsibilities

- Generate insights and models from multi-omics datasets (using public and internal data) to understand patterns, trends and relationships within data to inform decision-making and solve problems.

  • Design, develops and programs methods, processes, and systems to extract, consolidate and analyze unstructured, diverse “big data” sources to generate actionable insights.
  • Build databases and is responsible for the curation of Data, including experimental data management.
  • Extracting knowledge, insights and predictions from data using statistical methods, machine learning and data visualization.
  • Work with scientists to identify optimal ways to prepare, annotate, store and navigate their datasets, including data application design and improvement.
  • Define and document best practices for capturing and entering experimental metadata, and educate scientists and collaborators about these standards.
  • Build pipelines for quality control, processing and analysis of raw targeted and un-targeted datasets.
  • Develops and codes software programs and leverages algorithms and methodologies being developed by the scientific community for use cases of relevance to Altos Labs.
  • Stay current with and adopt emergent analytical methodologies, tools and applications to ensure fit-for-purpose and impactful approaches.
  • Partner closely with the Lab scientists and researchers to identify opportunities for data and insight mining to accelerate research.
  • Embed analyses and visualizations in automated reports.

    ## Who You Are

    #### Minimum Qualifications

    - PhD in interdisciplinary quantitative science such as Biology, Chemistry, Computer Science, Physics, etc.
  • Relevant work experience in either an academic or industry setting.
  • Working knowledge of cell biology and experience in large scale data analysis and statistical modeling on datasets like RNA-seq, ATAC-seq, protein network, pathways, etc.
  • Proven track record of completed scientific projects as evidenced by publications and preprints.
  • Strong breadth and expertise in Statistical analysis, machine learning, data visualization, programming (Python, R, etc.), data cleaning and data manipulation.
  • Tools: Python, R, SQL, TensorFlow, Scikit-learn, Tableau, Power BI.
  • Ability to generate high quality ideas and be self-driven to explore.
  • Strong experience in programming and comfortable modifying existing code-base. Experience with Python, R data cleaning and data manipulation or other related scientific languages.
  • Willing to work in a collaborative environment and share periodic updates across the company.

    #### Preferred Qualifications

    - Strong and demonstrable experience working in an AWS compute environment is a major advantage.
  • Experience integrating prior knowledge from public databases (e.g., KEGG) into omics data analysis pipelines.

    The salary range for Cambridge, UK:

    - Scientist I, Data Science: £64,600 - £87,400
  • Senior Scientist I, Data Science: £88,000 - £132,000

    Exact compensation may vary based on skills, experience, and location.

    Before submitting your application:

    - Please click here to read the Altos Labs EU and UK Applicant Privacy Notice ( bit.ly/eu_uk_privacy_notice )

    - This Privacy Notice is not a contract, express or implied and it does not set terms or conditions of employment.

    ## What We Want You To Know

    We are a culture of collaboration and scientific excellence, and we believe in the values of inclusion and belonging to inspire innovation.

    Altos Labs provides equal employment opportunities to all employees and applicants for employment and prohibits discrimination and harassment of any type without regard to race, color, religion, age, sex, national origin, disability status, genetics, protected veteran status, sexual orientation, gender identity or expression, or any other characteristic protected by federal, state or local laws.

    This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

    Altos currently requires all employees to be fully vaccinated against COVID-19, subject to legally required exemptions (e.g., due to a medical condition or sincerely-held religious belief).

    Thank you for your interest in Altos Labs where we strive for a culture of scientific excellence, learning, and belonging.

    Note: Altos Labs will not ask you to download a messaging app for an interview or outlay your own money to get started as an employee. If this sounds like your interaction with people claiming to be with Altos, it is not legitimate and has nothing to do with Altos. Learn more about a common job scam at https://www.linkedin.com/pulse/how-spot-avoid-online-job-scams-biron-clark/
    #J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.

Pre-Employment Checks for Machine Learning Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in machine learning reflects the discipline's unique position at the intersection of artificial intelligence research, algorithmic decision-making, and transformative business automation. Machine learning professionals often have privileged access to proprietary datasets, cutting-edge algorithms, and strategic AI systems that form the foundation of organizational competitive advantage and automated decision-making capabilities. The machine learning industry operates within complex regulatory frameworks spanning AI governance directives, algorithmic accountability requirements, and emerging ML ethics regulations. Machine learning specialists must demonstrate not only technical competence in model development and deployment but also deep understanding of algorithmic fairness, AI safety principles, and the societal implications of automated decision-making at scale. Modern machine learning roles frequently involve developing systems that impact hiring decisions, financial services, healthcare diagnostics, and autonomous operations across multiple regulatory jurisdictions and ethical frameworks simultaneously. The combination of algorithmic influence, predictive capabilities, and automated decision-making authority makes thorough candidate verification essential for maintaining compliance, fairness, and public trust in AI-powered systems.

Why Now Is the Perfect Time to Launch Your Career in Machine Learning: The UK's Intelligence Revolution

The United Kingdom stands at the epicentre of a machine learning revolution that's fundamentally transforming how we solve problems, deliver services, and unlock insights from data at unprecedented scale. From the AI-powered diagnostic systems revolutionising healthcare in Manchester to the algorithmic trading platforms driving London's financial markets, Britain's embrace of intelligent systems has created an extraordinary demand for skilled machine learning professionals that dramatically exceeds the current talent supply. If you've been seeking a career at the forefront of technological innovation or looking to position yourself in one of the most impactful sectors of the digital economy, machine learning represents an exceptional opportunity. The convergence of abundant data availability, computational power accessibility, advanced algorithmic development, and enterprise AI adoption has created perfect conditions for machine learning career success.