Scientific Software Engineer

Exeter
1 year ago
Applications closed

Related Jobs

View all jobs

Remote Software & Data Engineer for NHS Data Systems

Software and Data Engineer

Software Engineer - AI MLOps Oxford, England, United Kingdom

Research Engineer Machine Learning

Machine Learning Data Engineer Obstetric Ultrasound

Founding Machine Learning Engineer

Interim Senior Scientific Software Engineer
Location: Exeter / Hybrid
Pay Rate: £500 per day (umbrella)

About the Role:
A public sector body is seeking an Interim Senior Scientific Software Engineer to join a cross-organisational team working on an AI-driven project. The primary responsibility of this role is to provide technical leadership and coordination across a team of Scientific Software Engineers and Data Scientists, acting as Scrum Master to support effective agile delivery. This position focuses on enhancing the team's technical leadership and agile practices, complementing the existing scientific leadership.

Key Responsibilities:

Provide technical leadership to deliver project milestones in collaboration with the project manager and team members.
Act as Scrum Master, facilitating agile ceremonies and supporting the team to achieve optimal workflow.
Lead the development of technical plans and roadmaps for the FastNet capability.
Collaborate closely with the project manager to ensure effective agile delivery practices are in place.
Key Skills and Experience Required:

Expert knowledge of Python and experience with quality assurance practices, including testing and documentation.
Proficient in agile development practices, particularly with the Scrum framework.
Knowledge of machine learning workflow development and deployment on cloud platforms such as AzureML.
Familiarity with handling large structured and unstructured datasets, ideally with geospatial data

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.