Scala Data Engineer

City of London
1 week ago
Create job alert

My client is based in the London area are currently looking to recruit for an experienced Scala Data Engineer to join their team on a 1 Year FTC. They are one of the leaders within the Consulting space. They are currently going through a period of growth and are looking for an experienced Scala Data Engineer to join their team. They are backed by a huge Multi National equity firm who are looking to bolster my clients financial position. They are expected to see year on year growth, which will allow them to implement and utilise the most in demand and cutting edge technology on the market right now.

Your role will include:

Designing, implementing, and maintaining Scala applications.
Collaborate with cross-functional teams to define and develop new features.
Write clean, maintainable, and efficient code.
Troubleshoot, debug, and optimize application performance.
Contribute to the entire development lifecycle, including concept, design, build, deploy, test, release, and support.
Stay up-to-date with the latest industry trends and technologies to ensure the application's competitiveness.
Participate in code reviews and provide constructive feedback to team members.

My client is providing access to;

Hybrid Working,
28 Days Holiday, Plus Bank Holiday
Private Medical Health
Pension Scheme
And More...

For this role, they are looking for a candidate that has experience in…

Proven experience as a Scala Data Engineer or similar role.
Strong understanding of functional programming concepts.
Must have experience migrating from Hadoop to the Cloud using Scala.
Strong experience in Data Pipeline creation is essential.
Big Data experience is needed.
Experience with Akka, Play Framework, or other Scala frameworks.
Familiarity with build tools such as SBT.
Knowledge of database systems (SQL and NoSQL) and experience with data modeling.
Understanding of distributed computing principles.
Familiarity with micro-services architecture.
Experience with version control systems, preferably Git.

This role is an urgent requirement, there are limited interview slots left, if interested send an up to date CV to Shoaib Khan - (url removed) or call (phone number removed) for a catch up in complete confidence.

Tenth Rev Data Teams offer more opportunities across the UK than any other recruiter We're the proud sponsor and supporter of SQLBits, AWS RE:Invent, Power Platform World Tour, the London Power BI User Group, Newcastle Power BI User Group and Newcastle Data Platform and Cloud User Group

Related Jobs

View all jobs

Scala Data Engineer

Scala Data Engineer

Scala Data Engineer

Scala Data Engineer

Scala Data Engineer

Scala Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.