SC Data Engineer - AWS

LA International
London
1 year ago
Applications closed

Related Jobs

View all jobs

SC Cleared Data Engineer

SC Cleared Data Engineer

Data Engineer - SC Cleared

Data Engineer (SC Cleared)

Data Engineer (SC Cleared)

Data Engineer - SC Cleared

SC Data Engineer - AWS

IR35: Outside
Rate: £400-450 / day (negotiable)
Clearance: SC
Start: ASAP
Duration: 6 months (extensions expected)
Location: Remote with occasional travel to Bristol / London

Job Brief: We are seeking a skilled and motivated Data Engineer with expertise in AWS to join our dynamic team. The ideal candidate will be responsible for designing, building, and maintaining scalable data pipelines that process vast amounts of data across different platforms. They will leverage AWS technologies to ensure seamless integration and optimization of data flows, ensuring high availability, security, and efficiency.

Skills & Qualifications:
* Strong experience with AWS services such as S3, Redshift, EC2, Lambda, Glue, Athena, and EMR.
* Proficiency in programming languages such as Python, Java, or Scala for data engineering tasks.
* Experience with data warehousing, ETL (Extract, Transform, Load) processes, and data integration.
* In-depth knowledge of cloud-based architectures and best practices for deploying data pipelines in AWS.
* Expertise in designing and implementing scalable and efficient data pipelines for both batch and real-time processing.
* Hands-on experience with data transformation and data processing frameworks (e.g., Apache Spark, Apache Kafka).
* Solid understanding of relational databases (e.g., MySQL, PostgreSQL) and NoSQL databases (e.g., DynamoDB, MongoDB).
* Familiarity with data security, governance, and compliance standards, particularly in cloud environments.
* Strong problem-solving skills and attention to detail.
* Excellent communication skills for collaboration with cross-functional teams.
* Ability to work in an agile development environment and manage multiple priorities.

Preferred Qualifications:
* Experience with containerization technologies like Docker and Kubernetes.
* Knowledge of data lakes, serverless architectures, and microservices.
* Familiarity with DevOps practices and CI/CD pipelines for automated deployment of data solutions.
* Certifications such as AWS Certified Data Analytics - Specialty or AWS Certified Solutions Architect are a plus.

Responsibilities:
* Design, develop, and optimize data pipelines on AWS to ingest, process, and transform data.
* Collaborate with data scientists, analysts, and business teams to understand requirements and deliver data solutions.
* Implement and manage efficient data storage solutions using AWS technologies.
* Ensure data quality, security, and compliance across all data engineering processes.
* Continuously monitor and improve data systems to ensure scalability and performance.
* Contribute to the development and implementation of best practices and standards for data engineering.

APPLY NOW!


Due to the nature and urgency of this post, candidates holding or who have held high level security clearance in the past are most welcome to apply. Please note successful applicants will be required to be security cleared prior to appointment which can take up to a minimum 10 weeks.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.