Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

SC Data Engineer - AWS

LA International
London
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer ( SC Cleared/ SC Eligible )

Lead Data Engineer ( SC Cleared/ SC Eligible)

Senior Data Engineer ( SC Cleared/ SC Eligible )

Lead Data Engineer ( SC Cleared/ SC Eligible)

Data Engineer (SC Cleared)

Data Engineer (SC)

SC Data Engineer - AWS

IR35: Outside
Rate: £400-450 / day (negotiable)
Clearance: SC
Start: ASAP
Duration: 6 months (extensions expected)
Location: Remote with occasional travel to Bristol / London

Job Brief: We are seeking a skilled and motivated Data Engineer with expertise in AWS to join our dynamic team. The ideal candidate will be responsible for designing, building, and maintaining scalable data pipelines that process vast amounts of data across different platforms. They will leverage AWS technologies to ensure seamless integration and optimization of data flows, ensuring high availability, security, and efficiency.

Skills & Qualifications:
* Strong experience with AWS services such as S3, Redshift, EC2, Lambda, Glue, Athena, and EMR.
* Proficiency in programming languages such as Python, Java, or Scala for data engineering tasks.
* Experience with data warehousing, ETL (Extract, Transform, Load) processes, and data integration.
* In-depth knowledge of cloud-based architectures and best practices for deploying data pipelines in AWS.
* Expertise in designing and implementing scalable and efficient data pipelines for both batch and real-time processing.
* Hands-on experience with data transformation and data processing frameworks (e.g., Apache Spark, Apache Kafka).
* Solid understanding of relational databases (e.g., MySQL, PostgreSQL) and NoSQL databases (e.g., DynamoDB, MongoDB).
* Familiarity with data security, governance, and compliance standards, particularly in cloud environments.
* Strong problem-solving skills and attention to detail.
* Excellent communication skills for collaboration with cross-functional teams.
* Ability to work in an agile development environment and manage multiple priorities.

Preferred Qualifications:
* Experience with containerization technologies like Docker and Kubernetes.
* Knowledge of data lakes, serverless architectures, and microservices.
* Familiarity with DevOps practices and CI/CD pipelines for automated deployment of data solutions.
* Certifications such as AWS Certified Data Analytics - Specialty or AWS Certified Solutions Architect are a plus.

Responsibilities:
* Design, develop, and optimize data pipelines on AWS to ingest, process, and transform data.
* Collaborate with data scientists, analysts, and business teams to understand requirements and deliver data solutions.
* Implement and manage efficient data storage solutions using AWS technologies.
* Ensure data quality, security, and compliance across all data engineering processes.
* Continuously monitor and improve data systems to ensure scalability and performance.
* Contribute to the development and implementation of best practices and standards for data engineering.

APPLY NOW!


Due to the nature and urgency of this post, candidates holding or who have held high level security clearance in the past are most welcome to apply. Please note successful applicants will be required to be security cleared prior to appointment which can take up to a minimum 10 weeks.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.