SC Data Engineer - AWS

LA International
London
4 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer | Outside IR35 | Remote

Consulting Data Engineer

Lead Data Engineer (AD -Consulting) - Exclusive

Lead Data Engineer (AD -Consulting) - Exclusive

Lead Data Engineer (AD -Consulting) - Exclusive

Lead Data Engineer (AD -Consulting) - Exclusive

SC Data Engineer - AWS

IR35: Outside
Rate: £400-450 / day (negotiable)
Clearance: SC
Start: ASAP
Duration: 6 months (extensions expected)
Location: Remote with occasional travel to Bristol / London

Job Brief: We are seeking a skilled and motivated Data Engineer with expertise in AWS to join our dynamic team. The ideal candidate will be responsible for designing, building, and maintaining scalable data pipelines that process vast amounts of data across different platforms. They will leverage AWS technologies to ensure seamless integration and optimization of data flows, ensuring high availability, security, and efficiency.

Skills & Qualifications:
* Strong experience with AWS services such as S3, Redshift, EC2, Lambda, Glue, Athena, and EMR.
* Proficiency in programming languages such as Python, Java, or Scala for data engineering tasks.
* Experience with data warehousing, ETL (Extract, Transform, Load) processes, and data integration.
* In-depth knowledge of cloud-based architectures and best practices for deploying data pipelines in AWS.
* Expertise in designing and implementing scalable and efficient data pipelines for both batch and real-time processing.
* Hands-on experience with data transformation and data processing frameworks (e.g., Apache Spark, Apache Kafka).
* Solid understanding of relational databases (e.g., MySQL, PostgreSQL) and NoSQL databases (e.g., DynamoDB, MongoDB).
* Familiarity with data security, governance, and compliance standards, particularly in cloud environments.
* Strong problem-solving skills and attention to detail.
* Excellent communication skills for collaboration with cross-functional teams.
* Ability to work in an agile development environment and manage multiple priorities.

Preferred Qualifications:
* Experience with containerization technologies like Docker and Kubernetes.
* Knowledge of data lakes, serverless architectures, and microservices.
* Familiarity with DevOps practices and CI/CD pipelines for automated deployment of data solutions.
* Certifications such as AWS Certified Data Analytics - Specialty or AWS Certified Solutions Architect are a plus.

Responsibilities:
* Design, develop, and optimize data pipelines on AWS to ingest, process, and transform data.
* Collaborate with data scientists, analysts, and business teams to understand requirements and deliver data solutions.
* Implement and manage efficient data storage solutions using AWS technologies.
* Ensure data quality, security, and compliance across all data engineering processes.
* Continuously monitor and improve data systems to ensure scalability and performance.
* Contribute to the development and implementation of best practices and standards for data engineering.

APPLY NOW!


Due to the nature and urgency of this post, candidates holding or who have held high level security clearance in the past are most welcome to apply. Please note successful applicants will be required to be security cleared prior to appointment which can take up to a minimum 10 weeks.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.