SAP Data Lead

Harrington Boyd
London
1 month ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

SAP Data Architect/ Lead

£85,000 - £105,000

Hybrid (London 2 days per week)

Our consulting client is searching for an SAP Data Architect. As an SAP Data Lead / Architect, you will play a critical role in shaping and executing data strategies. You will lead the design and implementation of data solutions, ensuring they align with business goals and enhance overall customer satisfaction. Your responsibilities will span from early-stage architecture planning to the optimization of processes and successful project delivery.

Responsibilities:

  1. Lead and oversee data migration strategies and approaches, including governance processes and reconciliation, ensuring smooth transitions from legacy systems to SAP S/4HANA.
  2. Architect comprehensive end-to-end data solutions that leverage SAP technologies, custom applications, and partner solutions, driving business transformation within the value chain tower.
  3. Provide expert guidance and advisory services to C-Level executives, helping to drive business transformation initiatives and the adoption of intelligent enterprise solutions.
  4. Conduct architecture assessments for customers, offering valuable insights and recommendations, while collecting and disseminating best practices across projects.
  5. Engage with clients to translate complex technical requirements into business-oriented solutions, ensuring clear communication and alignment with business processes.
  6. Demonstrate deep understanding of data structures, ETL processes, data mapping, and transformation rules, ensuring effective data migration and load strategies.
  7. Collaborate with cross-functional teams to optimize data management processes, enhancing overall project success and customer satisfaction.


You Will Have:

  1. Proven experience as an SAP Data Lead or SAP Data Architect, with at least two full project lifecycles completed in an SAP environment.
  2. Strong expertise in data migration, including governance, reconciliation, and ETL processes from legacy systems.
  3. Proficiency in SAP S/4HANA and a deep understanding of SAP technologies, custom applications, and partner solutions.
  4. A solid grasp of data structures, extraction tools, data mapping, and transformation rules.
  5. Excellent communication skills, with the ability to translate technical requirements into business language and effectively interact with clients.
  6. The ability to act as a trusted advisor to C-Level executives, influencing strategic decisions and driving business transformation initiatives.
  7. Prior client-facing consultancy experience, with a strong ability to manage customer relationships and expectations.


If you, or anyone you know of could be interested, please apply here, or call (phone number removed) and ask for Ben.J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.