Sanderson | Head of Product / Product Lead

Sanderson
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer (National Security)

BI and Data Engineer

BI and Data Engineer

Data Engineer SC Cleared

Data Analyst - Identity & Access - Active Directory

Head of Product / Product Lead / Senior Product Manager / AI Product Manager / Role purpose:This role will ensure we achieve a set of agreed outcomes across a substantial program of work, by creating and then delivering a roadmap with a continuous focus on quality, pace and the accurate measurement of impact. The role will focus will on optimising our business and service operations using cutting-edge predictive and prescriptive AI models, Data Science and Machine Learning to improve operational efficiency, reduce costs, and enhance customer satisfaction.The role:Define the product vision, goals, and roadmap, ensuring alignment with organisational objectives in line with the AI Strategy. Gather requirements from stakeholders, including operational teams and leadership, and translate them into actionable deliverables.Prioritise features and tasks based on business value, technical feasibility, and timelines.Collaborate with the team of Data Scientists and Engineers to develop innovative solutions for deployment optimisation.Partner with internal teams to ensure smooth integration of project into existing systems and business processes.Monitor project progress, manage risks, and address roadblocks to ensure timely delivery.Define success metrics and KPIs for AI initiatives and monitor their performance post-launch.Drive continuous improvement by incorporating feedback and analysing results.Communicate project updates, insights, and progress to stakeholders.Experience / Skills:Proven experience as a Product Manager / Leader in a technical or data-driven environment.Strong understanding of AI, Data Science, and Machine Learning applications.Exceptional communication, stakeholder management, and organisational skills. Able to convey ideas and technical content to different stakeholders, from engineers to senior executives.Experience with Agile methodologies and managing cross-functional teams.Experience of owning a complex data science/ Gen AI problem from ideas and discovery through to prioritisation, definition, delivery and post launch evaluation. Demonstrating sound decision making at each stageData Proficiency and Collaboration: Skilled in analysing raw data and using SQL and other data tools to visualise insights; effectively translates complex data needs into clear requirements for data science/Gen AI teams and actionable recommendations for stakeholders.Sufficient understanding of software development, data science and GenAI processes and design principles to be able to communicate and collaborate effectively with technical team; and to assess the implications of technical decisions on the product strategy and user experience.Track record of defining and delivering great analytical outcomes leading to commercial outcomes – and adept at balancing the two.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.