Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Risk Management – Data Scientist / Applied AI ML Lead - Vice President

J.P. Morgan
City of London
3 weeks ago
Create job alert

Bring your expertise to JPMorgan Chase. As part of Risk Management and Compliance, you are at the center of keeping JPMorgan Chase strong and resilient. You help the firm grow its business in a responsible way by anticipating new and emerging risks, and using your expert judgement to solve real-world challenges that impact our company, customers and communities. Our culture in Risk Management and Compliance is all about challenging the status quo and striving to be best in class.

As a Vice President, Data Scientist in the Data Science team, you will help us shape the future of financial services by developing and implementing advanced AI solutions. You will collaborate with product, engineering, and business partners to create impactful, scalable tools that drive real business value. In this role, you will have the opportunity to experiment, learn, and innovate alongside a diverse team, leveraging your expertise in data science and finance. Together, we will deliver solutions that transform how we operate and serve our clients. Join us to make a meaningful difference and grow your career in a dynamic, inclusive environment.

Job Responsibilities
  • Work with senior leaders to re-engineer processes by embedding AI into current workflows, driving change and efficiency.
  • Design, build, and deploy impactful AI and data-driven applications using cloud, data mesh, and knowledge base technologies such as centralized repositories, semantic search, and automated information retrieval systems that organize, store, and provide easy access to critical business data and insights.
  • Integrate advanced analytics models and applications into operational workflows to ensure business value and adoption.
  • Work on research initiatives and pilot projects to identify and apply cutting-edge AI/ML solutions, including GenAI and agentic technologies.
  • Implement robust drift monitoring and model retraining processes to maintain accuracy and performance (ongoing performance monitoring).
  • Communicate analytical findings and recommendations to senior leadership.
Required Qualifications, Capabilities, and Skills
  • Significant experience in data science, analytics or a related field.
  • Proficient in the end-to-end model development lifecycle, including planning, execution, continuous improvement, risk management, and ensuring solutions are scalable and aligned with business objectives.
  • Proven track record of deploying, operationalizing, and managing AI, ML, and advanced analytics models in a large-scale enterprise environment.
  • Experience in AI/ML algorithms, statistical modeling, and scalable data processing pipelines.
  • Experience with A/B experimentation and the ability to develop and debug production-quality code.
  • Strong written and verbal communication skills, with the ability to convey technical concepts and results to both technical and business audiences.
  • Scientific mindset with the ability to innovate and work both independently and collaboratively within a team.
  • Ability to thrive in a matrix environment and build partnerships with colleagues at various levels and across multiple locations.
  • Proven experience in agentic frameworks (using CruxAI, Google ADK, LangGraph).
Preferred Qualifications, Capabilities, and Skills
  • Advanced degree (Master’s or Ph.D.) in Data Science, Computer Science, Mathematics, Engineering, or a related field is preferred.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Science Manager (Applied AI)

Lead Data Scientist

Senior Genomic Data Scientist (we have office locations in Cambridge, Leeds & London)

Senior Genomic Data Scientist (we have office locations in Cambridge, Leeds & London)

Senior Genomic Data Scientist (we have office locations in Cambridge, Leeds & London) London

Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.