Research Scientist

Lifelancer
London
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Scientist

Data Scientist

Data Scientist - National Security (TIRE) based in Cheltenham/Hybrid

Senior Data Scientist - National Security (TIRE) based in Cheltenham/Hybrid

Data science programme lead

Senior Machine Learning Engineer

Job Title:Research Scientist

Job Location:London, UK

Job Location Type:Remote

Job Contract Type:Full-time

Job Seniority Level:Entry level

SpAItial is pioneering the development of a frontier 3D foundation model, pushing the boundaries of AI, computer vision, and spatial computing. Our mission is to redefine how industries, from robotics and AR/VR to gaming and movies, generate and interact with 3D content.

We’re looking for individuals who are bold, innovative, and driven by a passion for pushing the boundaries of what’s possible. You should thrive in an environment where creativity meets challenge and be fearless in tackling complex problems. Our team is built on a foundation of dedication and a shared commitment to excellence, so we value people who take immense pride in their work and place the collective goals of the team above personal ambition. As a part of our startup, you’ll be at the forefront of the AI revolution in 3D technology, and we want you to be excited about shaping the future of this dynamic field. If you’re ready to make an impact, embrace the unknown, and collaborate with a talented group of visionaries, we want to hear from you.

Responsibilities

  • Design and develop 3D foundational ML models
  • Large-scale distributed model training
  • Develop demos showcasing the trained model prototypes
  • Processing and maintaining large data for model training
  • Productionizing models, test-time model optimization

Qualifications:

  • PhD in Computer Science or related field with a strong publication record in Machine Learning, Computer Vision, Robotics, or Graphics.
  • Strong knowledge of 3D projective geometry
  • Strong knowledge of modern 3D representations - 3D Gaussian Splatting, Neural Radiance Fields
  • Experience in generative models (GANs, diffusion, LLMs, etc)
  • Rich experience with large-scale 3D deep-learning in PyTorch
  • Experience with modern video/image generative diffusion models
  • Strong coding skills, able to rapidly iterate through ML experiments

At SpAItial, we are committed to creating a diverse and inclusive workplace. We welcome applications from people of all backgrounds, experiences, and perspectives. We are an equal opportunity employer and ensure all candidates are treated fairly throughout the recruitment process.



Lifelancer (https://lifelancer.com) is a talent-hiring platform in Life Sciences, Pharma and IT. The platform connects talent with opportunities in pharma, biotech, health sciences, healthtech and IT domains.

For more details and to find similar roles, please check out the below Lifelancer link.

https://lifelancer.com/jobs/view/0e0eaae65291d66244ef4a02de3c1c93

Apply on Lifelancer Platform

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.