Research Scientist

Lifelancer
London
11 months ago
Applications closed

Related Jobs

View all jobs

NLP/LLM Research Scientist (PhD) – Cambridge Hybrid

Senior NLP & AI Research Scientist

Senior NLP & AI Research Scientist - Hybrid

Remote Principal NLP Research Scientist: Lead AI Innovation

Research Engineer, Machine Learning - Paris/London/Zurich/Warsaw

Head of Research Data Services, Global Data Sciences, Oncology Therapy Area, Research and Devel[...]

Job Title:Research Scientist

Job Location:London, UK

Job Location Type:Remote

Job Contract Type:Full-time

Job Seniority Level:Entry level

SpAItial is pioneering the development of a frontier 3D foundation model, pushing the boundaries of AI, computer vision, and spatial computing. Our mission is to redefine how industries, from robotics and AR/VR to gaming and movies, generate and interact with 3D content.

We’re looking for individuals who are bold, innovative, and driven by a passion for pushing the boundaries of what’s possible. You should thrive in an environment where creativity meets challenge and be fearless in tackling complex problems. Our team is built on a foundation of dedication and a shared commitment to excellence, so we value people who take immense pride in their work and place the collective goals of the team above personal ambition. As a part of our startup, you’ll be at the forefront of the AI revolution in 3D technology, and we want you to be excited about shaping the future of this dynamic field. If you’re ready to make an impact, embrace the unknown, and collaborate with a talented group of visionaries, we want to hear from you.

Responsibilities

  • Design and develop 3D foundational ML models
  • Large-scale distributed model training
  • Develop demos showcasing the trained model prototypes
  • Processing and maintaining large data for model training
  • Productionizing models, test-time model optimization

Qualifications:

  • PhD in Computer Science or related field with a strong publication record in Machine Learning, Computer Vision, Robotics, or Graphics.
  • Strong knowledge of 3D projective geometry
  • Strong knowledge of modern 3D representations - 3D Gaussian Splatting, Neural Radiance Fields
  • Experience in generative models (GANs, diffusion, LLMs, etc)
  • Rich experience with large-scale 3D deep-learning in PyTorch
  • Experience with modern video/image generative diffusion models
  • Strong coding skills, able to rapidly iterate through ML experiments

At SpAItial, we are committed to creating a diverse and inclusive workplace. We welcome applications from people of all backgrounds, experiences, and perspectives. We are an equal opportunity employer and ensure all candidates are treated fairly throughout the recruitment process.



Lifelancer (https://lifelancer.com) is a talent-hiring platform in Life Sciences, Pharma and IT. The platform connects talent with opportunities in pharma, biotech, health sciences, healthtech and IT domains.

For more details and to find similar roles, please check out the below Lifelancer link.

https://lifelancer.com/jobs/view/0e0eaae65291d66244ef4a02de3c1c93

Apply on Lifelancer Platform

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.