Research Engineer: Graph Machine Learning

Atmanlabs
London
2 months ago
Create job alert

Research Engineer: Graph Machine LearningAtman Labs, London

About Atman Labs
At Atman Labs we are building software to emulate proactive human expertise. Emulating human experts with deep knowledge and proactive assistance has largely been impossible to do via standalone Artificial Intelligence techniques. As an applied research and commercialization company we are deploying our products in a number of domains to demonstrate the value of our approach – from proactive shopping assistance, to personal teachers to healthcare concierges – and with this commercial focus advance our unique research that lies at the intersection of Reinforcement Learning rewards, Large Scale Knowledge Representation, and Predictive Models inspired by biological priors.

The Next Frontier of Machine Reasoning: Web-scale Knowledge Graph Exploration using Reinforcement Learning
Human experts can form and explore structured mental models in their heads to solve open-ended problems across different domains. Our research seeks to emulate this process through a novel combination of using reinforcement learning agents to perform exploration through a knowledge graph. Knowledge graphs allow us to represent structured information and the logical relations that govern it, unlocking the ability to build reinforcement learning strategies that can learn to solve complex, open-ended problems across web-scale and continuously-evolving domains.

You will be leading the research on knowledge representation and how it can serve to build AI systems capable of such complex reasoning. You will work on formulating research problems that explore how Reinforcement Learning algorithms can interact with large and complex knowledge graphs to reason over ambiguous tasks. To do this, you will develop knowledge graph machine learning techniques that will power several tools within our products. Knowledge graph representations (e.g. embeddings) are critical to representing web-scale, structured information in a compact format for a reinforcement learning agent, ensuring scalability. You will lead the efforts on training and validating graph embedding algorithms that capture multi-hop semantics within large web-scale knowledge graphs. Additionally, you will develop link prediction models that will enhance both the reasoning over the knowledge graph and recommendations.

About You
We are looking for ambitious and independent thinkers who have a deep desire to contribute and want to be part of the team that makes this a reality for humanity. In order to contribute, you should have all of these qualities:

  1. You have a PhD degree or equivalent industrial expertise in Graph Machine Learning and its applications.
  2. You have a deep understanding of the state-of-the-art in graph machine learning, with a focus on learning graph embeddings and link prediction problems.
  3. You have experience in training and tuning various graph ML algorithms including GNNs, Message Passing and Graph Transformers. Experience in building graph-based recommendation systems is a plus.
  4. You have 5+ years of programming experience in Python and have development experience with toolkits like PyTorch or Tensorflow and can deploy models with clean APIs. You are equally capable as a software engineer as you are in formulating novel research ideas and your code proves it.

Moreover, in order to deeply fit within our culture, you should embody the following:

  1. You are capable of reasoning from first-principles, where there is no trodden path, as well as critically evaluate when existing ideas are worth considering.
  2. You are articulate and can present your ideas in writing, in person and in small groups educating audiences at all levels on the application of generative models.
  3. You have a high ‘faker’ detector in others, and can critically evaluate truth from fiction in your own work.
  4. Your colleagues consider you a highly positive personality, you amplify the energy of others rather than dampen the mood.
  5. Your intensity goes from 0-1000 when you become authentically interested in a topic.
  6. You not only have interests in systems engineering but are deeply curious about a range of interdisciplinary topics ranging from computational creativity, knowledge graphs, recommendations, web scale search, deep learning, large language models, computer vision, human consciousness, and the opportunity to build truly intelligent systems in software that are inspired by biology.
  7. Outside work you can show high creativity and intensity in your pursuits, you cannot easily be characterized in one discipline.
  8. You consider yourself an innovator, and original thinker, not a follower. You are looking for a way to contribute to the world and want to join our team to do so.

You want to work in person in London. We’ll sponsor your visa.

We have the ambition to usher the world towards co-existing alongside Benevolent AGI.
Not only do we believe that our work is a credible approach to functionally emulate human reasoning but we believe that this mission can also allow us to conceive many commercial products that yield billions of dollars of commercial revenues that can support an ambitious R&D effort for years to come. We are building for a future where humans coexist alongside benevolent expert systems and seek to advance the field from the front. We are looking for ambitious and independent thinkers who have a deep desire to contribute and want to be part of the team that makes this a reality for humanity.

Apply with a short message and a list of your projects, your life story in 5 sentences, your favorite book or artist, and your resume to .


#J-18808-Ljbffr

Related Jobs

View all jobs

Software Engineer - Graph Data Science

Senior Research Engineer, Deep Learning for Cancer Genomics

Machine Learning Engineer London, United Kingdom

Senior Staff Machine Learning Scientist, Operations

Machine Learning Research Engineer (Foundational Research)

Lead Data Scientist - Recommender Systems

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.