Research Associate OR Research Fellow In Machine Learning (2 posts available)

The University of Manchester
Manchester
1 year ago
Applications closed

Related Jobs

View all jobs

Associate Product Data Analyst (FTC)

FIRE SERVICES DATA ANALYST - FIRE

FIRE SERVICES DATA ANALYST - FIRE

Machine Learning Engineer

Research Associate in Data Science for Construction Productivity (Fixed Term)

Research Associate - Machine Learning (Environmental Technologies)

Applicants are invited for the posts of Research Associate or Research Fellow in Machine Learning to work with AI Researchers in the Centre for AI Fundamentals at the University of Manchester.

You will join a team of probabilistic modellers and machine learning researchers developing new collaborative AI principles and methods. This is an exciting topic which inspires new problems in fundamental ML work, and allows attacking new applications which make a difference, for instance in scientific research. Different team members have different expertise, and by working together are able to address more novel problems. Keywords include: automatic experimental design, Bayesian inference, human-in-the-loop learning, machine teaching, privacy-preserving learning, reinforcement learning, inverse reinforcement learning, computational rationality and user modelling, and simulator-based inference.

The post-holder will work on a project from Professor Kaski’s UKRI Turing AI World-Leading Fellowship. Research here includes work to develop new principles and methods for Advanced User Modelling, sequential decision making and Automatic Experimental Design, with and without a Human-in-the-Loop.

A PhD (or equivalent) in a relevant discipline is required. You should have excellent organisational skills and the ability to work well both in a team and using your own initiative. Experience in research methods and techniques to work within established research programmes is essential.

What you will get in return:

  • Fantastic market leading Pension scheme
  • Excellent employee health and wellbeing services including an Employee Assistance Programme
  • Exceptional starting annual leave entitlement, plus bank holidays
  • Additional paid closure over the Christmas period
  • Local and national discounts at a range of major retailers

As an equal opportunities employer we welcome applicants from all sections of the community regardless of age, sex, gender (or gender identity), ethnicity, disability, sexual orientation and transgender status. All appointments are made on merit.

Our University is positive about flexible working you can find out morehere

Hybrid working arrangements may be considered.

Please note that we are unable to respond to enquiries, accept CVs or applications from Recruitment Agencies.

Any CV’s submitted by a recruitment agency will be considered a gift.

Enquiries about the vacancy, shortlisting and interviews:

Name: Isabel Machado

Email:

General enquiries:

Email:

Technical support:

https://jobseekersupport.jobtrain.co.uk/support/home

This vacancy will close for applications at midnight on the closing date.

Please see the link below for the Further Particulars document which contains the person specification criteria.


Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.