Research Associate OR Research Fellow In Machine Learning (2 posts available)

The University of Manchester
Manchester
1 year ago
Applications closed

Related Jobs

View all jobs

FIRE SERVICES DATA ANALYST - FIRE

AssistantAssociate Professor in Statistical Data Science

Research Associate - Machine Learning (Environmental Technologies)

Data Engineer - 16095

Data Engineer

Machine Learning Engineer

Applicants are invited for the posts of Research Associate or Research Fellow in Machine Learning to work with AI Researchers in the Centre for AI Fundamentals at the University of Manchester.

You will join a team of probabilistic modellers and machine learning researchers developing new collaborative AI principles and methods. This is an exciting topic which inspires new problems in fundamental ML work, and allows attacking new applications which make a difference, for instance in scientific research. Different team members have different expertise, and by working together are able to address more novel problems. Keywords include: automatic experimental design, Bayesian inference, human-in-the-loop learning, machine teaching, privacy-preserving learning, reinforcement learning, inverse reinforcement learning, computational rationality and user modelling, and simulator-based inference.

The post-holder will work on a project from Professor Kaski’s UKRI Turing AI World-Leading Fellowship. Research here includes work to develop new principles and methods for Advanced User Modelling, sequential decision making and Automatic Experimental Design, with and without a Human-in-the-Loop.

A PhD (or equivalent) in a relevant discipline is required. You should have excellent organisational skills and the ability to work well both in a team and using your own initiative. Experience in research methods and techniques to work within established research programmes is essential.

What you will get in return:

  • Fantastic market leading Pension scheme
  • Excellent employee health and wellbeing services including an Employee Assistance Programme
  • Exceptional starting annual leave entitlement, plus bank holidays
  • Additional paid closure over the Christmas period
  • Local and national discounts at a range of major retailers

As an equal opportunities employer we welcome applicants from all sections of the community regardless of age, sex, gender (or gender identity), ethnicity, disability, sexual orientation and transgender status. All appointments are made on merit.

Our University is positive about flexible working you can find out morehere

Hybrid working arrangements may be considered.

Please note that we are unable to respond to enquiries, accept CVs or applications from Recruitment Agencies.

Any CV’s submitted by a recruitment agency will be considered a gift.

Enquiries about the vacancy, shortlisting and interviews:

Name: Isabel Machado

Email:

General enquiries:

Email:

Technical support:

https://jobseekersupport.jobtrain.co.uk/support/home

This vacancy will close for applications at midnight on the closing date.

Please see the link below for the Further Particulars document which contains the person specification criteria.


Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.