Research Associate in Computational Fluid Dynamics

The University of Manchester
Manchester
1 year ago
Applications closed

Related Jobs

View all jobs

Postdoctoral Research Associate in Statistical Genetics and Machine Learning (Fixed Term)

Postdoctoral Research Associate in Statistical Genetics and Machine Learning (Fixed Term)

Lecturer/Senior Lecturer Data Science

Lecturer/Senior Lecturer Data Science

Data Scientist

Data Science Research Associate – Pregnancy Studies

We seek to appoint a research associate in Computational Fluid Dynamics, as part of an Innovate UK project working on the development of multi-fidelity modelling of fatigue and wear in hydrogen engines. The current appointment is for an initial 30 months, thought there is likely to be an opportunity for extension.

The successful candidate will work as part of an interdisciplinary team towards the aim of developing a digital tool for the design of key products in hydrogen fueled powertrains, enabling the prediction and mitigation of component failure when exposed to hydrogen operating environments. The multi-fidelity approach to be adopted seeks to combine predictions with different levels of accuracy into a reduced order model for the purpose of design exploration and evaluation.

The candidate should have knowledge and working experience of various approaches for the prediction of turbulence modelling & simulation, along with an interest to apply this expertise to complex industrial cases involving conjugate heat transfer and thermomechanical fatigue.

The successful candidate will have completed a PhD (or equivalent) in a related area and will have a strong teamwork mentality and a growth mindset. The selection committee will look for evidence of some or all of the following; significant programming experience, experience in the application of machine learning techniques to CFD, advanced data analysis skills and a track record of successful dissemination of their research via top journal papers and oral presentation at international conferences.

What you will get in return:

  • Fantastic market leading Pension scheme
  • Excellent employee health and wellbeing services including an Employee Assistance Programme
  • Exceptional starting annual leave entitlement, plus bank holidays
  • Additional paid closure over the Christmas period
  • Local and national discounts at a range of major retailers

As an equal opportunities employer we welcome applicants from all sections of the community regardless of age, sex, gender (or gender identity), ethnicity, disability, sexual orientation and transgender status. All appointments are made on merit.

Our University is positive about flexible working you can find out morehere

Hybrid working arrangements may be considered.

Please note that we are unable to respond to enquiries, accept CVs or applications from Recruitment Agencies.

Any CV’s submitted by a recruitment agency will be considered a gift.

Enquiries about the vacancy, shortlisting and interviews:

Name: Prof Alistair Revell

Email:

General enquiries:

Email:

Technical support:

https://jobseekersupport.jobtrain.co.uk/support/home

This vacancy will close for applications at midnight on the closing date.

Please see the link below for the Further Particulars document which contains the person specification criteria.


Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.